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ABSTRACT: the future of cancer care will be based on precision oncology, which uses individual tumor molecular profiles to provide
the correct drug to the appropriate patient at the appropriate time. This approach might deliver precise results with minimal side
effects and enhanced treatment success rates. However, the vision fails to materialize in reality because current tools remain
centralized and needs advanced infrastructure together with specialized/trained staff and prolonged procedural time. The lack
of laboratory capabilities in healthcare settings can be addressed through Point-of-Care (POC) testing which enables diagnostic
methods to be performed near or at the site of patient care thus linking laboratory capabilities to practical healthcare delivery. The
technology is capable of delivering specific diagnostic tests at bed-side, and in particular in remote areas. The implementation of POC
testing enables precision oncology to become practical allowing for prompt medical decisions. POC systems allow for continuous
tracking of relapse, resistance and response. POC testing serves as an essential component of precision oncology because it enables
personalized care more quickly and directly to patients. This review synthesizes current and emerging POC platforms for oncology,
evaluates their analytical performance, clinical readiness, and regulatory landscape, and identifies unmet needs that must be
addressed to enable routine adoption for diagnosis and monitoring.

Key words: precision oncology; POC testing; molecular
diagnostics; liquid biopsy; sensors.
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Impact statement: The possibility of reaching precision oncol-
ogy solutions cannot be considered apart from a quick monitor-
ing of therapeutic efficacy. In order to tailor therapies for can-
cer patients, the development of point-of-care devices would
open to easy and quick response by specialists and patients,
also strengthening the concept of telemedicine.
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tial-stage cancer, yet fails to handle molecular com-

INTRODUCTION

Cancer treatment followed under a “one-size-fits-
all"” model for many decades because it relied on
standardized protocols that used tumor histology,
anatomical site, and clinical staging as guidance (1).
These techniques show effectiveness for treating ini-

plexity, heterogeneous nature and its dynamic evo-
lutionary changes (2).

The field of tumour-genome profiling has expe-
rienced significant advancement during the last
twenty years. The first wave started with commer-
cial next-generation sequencing (NGS) in 2005 (3).
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The implementation of hybrid-capture panels in
2013 enabled clinical-grade whole-exome/large-tar-
get sequencing to become a standard practice in
oncology (4). Single-cell RNA/DNA sequencing fol-
lowed in 2015, revealing intratumoral heterogene-
ity at cellular resolution (5). The landscape evolved
further with the introduction of Long-read high-fi-
delity (HiFi) sequencing technology in 2019 that
enables the detection of intricate structural varia-
tions which short reads fail to identify. Ultra-deep
error-suppressed assays which started in 2021 pro-
vide part-per-million sensitivity for plasma-based
minimal residual disease monitoring (6, 7). The con-
ventional cancer classification system'’s limitations
led to a new approach of molecular profiling which
triggered successive genomic innovations that shifted
oncology from histology-based treatment to biolo-
gy-driven precision care.

Rapid advancements in genomic research have
accelerated the adoption of precision oncology as
a standard treatment approach for cancer patients.
Precision oncology uses multiple biomarkers to
determine the appropriate therapy intensity based
on tumor biology: (i) The use of genomic mark-
ers like activating Epidermal Growth Factor Recep-
tor (EGFR) mutations in non-small-cell lung cancer
(NSCLC) leads patients to receive tyrosine-kinase
inhibitors (TKI) instead of standard chemotherapy
treatment (8); (ii) the presence of Human Epidermal
Growth Factor Receptor 2 (HER2) overexpression
as a proteomic marker enables doctors to identify
breast cancer patients who need trastuzumab treat-
ment while preventing its use in patients without
HER2-positive tumors (9); (iii) the presence of MGMT
promoter methylation in glioblastoma serves as an
epigenetic marker to predict improved temozolo-
mide response thus requiring more intense treat-
ment (10) and (iv) multi-analyte expression panels
such as the 21-gene Oncotype DX test stratify ear-
ly-stage, hormone-receptor-positive breast cancer
so that low-risk patients safely omit adjuvant che-
motherapy, reducing overtreatment without com-
promising outcomes (11, 12). Such advancements
demonstrate how precision tools both direct treat-
ment escalation and provide safe de-escalation
treatment which establish a foundation for indi-
vidualized care.

Precision medicine has transformed oncology by
moving away from standard treatments to person-
alized care which has reshaped both the objectives
and organization of the field and improved treat-
ment effectiveness through better response rates,

reduced unnecessary treatment, and individualized
choices (13). Yet the real-world implementation of
precision oncology practices exists in a state of sig-
nificant inequality and operational inefficiency. Cen-
tralized diagnostic workflows that need advanced
laboratory infrastructure and expensive sequenc-
ing platforms and highly specialized personnel cre-
ate delays of up to three weeks between biopsy and
therapeutic decision-making (14-16). The time spent
waiting for test results is crucial for patients with
fast-moving cancers because tumor biology changes,
patient health worsens, and treatment opportuni-
ties decrease with each passing hour. Cancer diag-
nostic facilities exist mainly in urban high-income
countries which prevents their use by rural popula-
tions and low and middle-income countries where
cancer cases are increasing quickly (17, 18). Even in
well-resourced settings, the process of sample col-
lection, transport, sequencing and analysis creates
delays that result in therapeutic decision delays of
days to weeks especially for aggressive or late-stage
cancers (19).

Researchers have previously addressed the transla-
tional gap through laboratory-based molecular inno-
vations. Liquid biopsy stands out as a minimally inva-
sive and repeatable tissue biopsy alternative which
allows researchers to study circulating tumor DNA
(ctDNA), RNA, extracellular vesicles (EVs) and circu-
lating tumor cells (CTCs) from biofluids, including
blood, urine and (20-22). EVs are broadly classified
by size and origin into exosomes (30-150 nm, endo-
somal origin), microvesicles (100-1000 nm, plasma
membrane budding), and apoptotic vesicles (50-5000
nm, released during cell death) (23). However, lig-
uid biopsy offers real-time insights and operational
flexibility, the analytical accuracy depends on bio-
logical and pre-analytical variability which can hide
true tumor signals.

Recent evidence shows that the absolute amount
of circulating biomarkers can fluctuate substantially
within the same individual, even when tumour bur-
den is biologically constant, because of short-term
physiological factors. Acute shifts in plasma volume
caused by dehydration or strenuous exercise pro-
duce multi-fold transient rise in total cell-free DNA
(cfDNA) concentration that ctDNA assays report
(24). Independent time-series studies have also
revealed diurnal oscillations: CTC counts in mouse
and human models peak at the onset of the rest/
night phase, suggesting endocrine regulation of
tumour-cell egress (25). Finally, pre-analytical vari-
ables-plasma vs serum matrix, occult haemolysis,
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and delays in tube processing - can shift total cfDNA
or EVs yield by an order of magnitude, with direct
consequences for mutation calling and quantitative
trending (24). Collectively, these hydration, circa-
dian and matrix-driven effects underscore the need
for active normalisation strategies whenever liquid
biopsy is decentralised to the point of care (POC).
The clinical adoption of liquid biopsy faces chal-
lenges because it depends on complex centralized
laboratory infrastructure and sophisticated assay
platforms (26). Liquid biopsy technologies need
adaptation to achieve their maximum potential for
POC implementation. The POC testing model trans-
forms healthcare by providing decentralized rapid
and clinically actionable diagnostics directly at or
near patient care locations (27, 28). The POC sys-
tems provide quick biomarker results which enable
fast diagnostic-treatment intervals and immediate
therapeutic alignment (29). The time advantage is
essential in oncology because urgent medical inter-
ventions have major effects on patient outcomes.
The promise of precision oncology requires tech-
nological innovation to develop compact diagnos-
tic tools that are both sensitive and clinically adapt-
able for POC settings.

Targeted care

¢ Replaces “one-size-fits-all” models

¢ Uses molecular profiling for
targeted therapies

¢ Improves outcomes and
reduces side effects

o
[M| Faster answers
A=

¢ Near-patient, rapid decisions
¢ Remote/outpatient/mobile o
ready (4
¢ Serial monitoring capable
o Compact, user-friendly design
¢ Decentralised, delay-free
diagnostics

The detection of cancer biomarkers has undergone
a transformation through new smart tools that
combine compact design with ultra-sensitivity and
decentralized adaptability. Electrochemical biosen-
sors now enable the real-time detection of ctDNA
at femtomolar concentrations using small sample
volumes (30). By integrating nanostructured elec-
trodes with surface-functionalized aptamers or DNA
probes, these platforms can achieve analytical per-
formance similar to that of centralized laboratories
through rapid POC testing (31, 32). The integration
of multiple functions, including isolation, enrich-
ment, and downstream biomarker analysis, onto
a single microfluidic platform enables microfluidic
lab-on-chip systems to perform multiplexed analy-
sis of liquid biopsy. The integrated design of these
systems decreases the complexity of sample han-
dling and reduces both bioanalyte loss and contam-
ination risks when compared to traditional bench-
top laboratory procedures (33). CRISPR-based diag-
nostics offer programmable nucleic acid detection
through user-friendly readouts, including colorimet-
ric, luminescent and lateral-flow assays for rapid
POC testing (34). The clinical adoption of nanopar-
ticle-enhanced sensors depends on solving manu-

Delay outcomes ﬁ

Centralized labs — slow results
Inaccessible in LMIC regions
Requires costly equipment and
skilled staff

Limited real-time monitoring

Smart tools (((.)))

i oc, e Electrochemical biosensors
O\ - liquid biopsy
\\(\  CRISPR-based assays -
TeC rapid gene mutation ID

¢ Microfluidic chips —»
miniaturized lab-on-chip

Figure 1. From bottlenecks to bedside, smart tools accelerate precision oncology.
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facturing scalability issues, cost reduction, regula-
tory approval, and workflow integration challenges
(35). These innovations create a vital pathway for
implementing precision oncology outside clinical
laboratory settings. The conceptual framework in
Figure 1 demonstrates how POC testing functions
as a vital component of real-time patient-centered
precision oncology.

The evidence from this review demonstrates that
POC technologies possess the technical ability to
detect molecular signatures for precision oncol-
ogy; however, their full potential requires coordi-
nated action. The combination of nanomaterial-en-
hanced electrochemical sensors, CRISPR diagnostics,
and fully integrated microfluidic “lab-on-a-chip” plat-
forms enables bedside assays to reduce the biop-
sy-to-decision window from weeks to minutes, thus
enabling therapeutic choices that match the speed
of tumor detection/management. The implemen-
tation of global POC precision oncology demands
essential steps, including the development of afford-
able devices that are validated in the field and the
establishment of adaptive regulations that match
innovative approaches with context-based valida-
tion. Further implementation of scalable training

Sample Transport:
Day 1-2

Sample Collection:
Day 0

Tumour biopsy Biopsy collection

Sample Collection:
Day 0

Finger-prick

Biofluid biomarkers

Sequencing:
Day 3-10

Centralized

On-site analysis

programs and ethical safeguards is required to pro-
tect privacy and ensure equitable access. Collectively,
these measures will establish bedside genomics as
a standard medical practice.

PRECISION ONCOLOGY AND THE
URGENCY OF DECENTRALISED
TESTING

Modern precision oncology depends on continuous
measurement of highly dynamic biomarkers like
single-nucleotide variants, gene fusions, circulat-
ing microRNAs, exosomes, oncoproteins, and even
intact circulating tumor cells (27, 33). The founda-
tional idea is that treatment is most effective when
tailored to the unique molecular profile of a patient’s
cancer (36). However, this vision is difficult to real-
ize due to several limitations of current centralized
diagnostic systems. These systems are labor-inten-
sive, slow, and often fail to capture the spatial and
temporal heterogeneity of malignancies (37). Tradi-
tional assays lack the sensitivity, speed, and multi-
plexing capabilities required for early detection, con-
tinuous monitoring, and precise treatment stratifi-

Interpretation:
Day 11-13

Clinical Decision:
Day 14

Turnaround: days
to weeks

Treatment plan decided
after report returns

Analysis :

Same Day Decision
0-2 hrs

1

)

Results generated
in < 7 hour

Immediate therapy
decision

Figure 2. Comparative timelines for centralized laboratory testing versus on-site diagnostics in precision oncology.
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cation-critical needs, especially for fast-progressing
cancers. As a result, actionable biomarkers often
cannot be exploited effectively in clinical practice
due to logistical delays, infrastructure deficits, and
access inequities inherent in the central-lab (38, 39).
To overcome this translational gap, diagnostic plat-
forms must not only deliver high analytical precision
but also function with operational flexibility across
diverse healthcare settings. The transition from cen-
tralized laboratory workflows to rapid near-patient
testing is illustrated in Figure 2.

To this, POC diagnostics are designed to move molec-
ular testing from centralized laboratories to locations
where patients receive care i.e. infusion suites, oper-
ating rooms, outpatient clinics, or even the home. In
oncology this decentralization is uniquely valuable
because actionable biomarkers (mutations, miR-
NAs, proteins, circulating tumour cells/exosomes)
can evolve rapidly under therapeutic pressure; short
“sample-to-answer” times therefore translate directly
into faster treatment adjustments and, potentially,
improved outcomes (40).

POC liquid-biopsy technologies are beginning to
close the “temporal gap” between sample collection
and clinical decision-making by generating action-
able molecular read-outs fast enough to guide ther-
apy adjustments in real time. A good illustration is
the integrated exosome isolation and detection sys-
tem (EXID system) microfluidic cartridge that isolates
tumor-derived exosomes, labels the immune-check-
point protein PD-L10on-chip, and quantifies the signal
in <2 h.In a pilot cohort of 16 lung-cancer patients the
assay distinguished post-treatment from pre-treat-
ment samples and from healthy controls, with a
limit of detection of 10.76 exosomes pL-'-demon-
strating its utility for tracking emerging resistance
to anti-PD-1/PD-L1 therapy at the chair-side rather
thanin a distant reference laboratory (41). Research-
ers have used a herring-bone microfluidic chip to
monitor 24 patients with metastatic pancreatic duc-
tal adenocarcinoma over multiple chemotherapy
cycles. The device captured over 80% of samples
as CTC-positive and produced per-patient “CTC/CSC
trajectories” that mirrored radiological progression
or response, providing a quantitative relapse signal
weeks before routine imaging results were available
(42). A 2025 study in triple-negative breast cancer
introduced a disposable, pen-printed paper chip that
detects exosomal miRNA-21 directly in serum. The
self-contained strip, coupled with enzyme-free sig-
nal amplification, reaches a 1.2 nM limit of detection
and delivers results in 30 minutes using a handheld
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potentiostat. This low-cost, home-based monitoring
of treatment response and recurrence between clinic
visits is particularly useful in aggressive TNBC (43).
Taken together, these sensor shows how decen-
tralised testing can capture rapidly evolving onco-
logic biomarkers at the POC, enabling much earlier
detection of relapse than is possible with traditional,
centrally run assays.

SMART TOOLS: TECHNOLOGICAL
CONVERGENCE IN PRECISION
ONCOLOGY

A new generation of “smart” POC devices is emerg-
ing from the synergistic fusion of four previously
independent innovation streams: (i) microfluidic lab-
on-chip architectures that automate sample-to-an-
swer workflows on disposable cartridges (33); (ii) bio-
sensor transduction schemes-electrochemical that
now achieve femtomolar-attomolar limits of detec-
tion for circulating proteins, exosomes, and nucleic
acids (27). Further the integration of nanomateri-
al-enhanced signal amplification with CRISPR-based
molecular recognition, microfluidic automation and
miniaturized electronics to create deployable POC
systems (44-46).

Electrochemical biosensing has become a corner-
stone of molecular precision oncology due to its
high analytical sensitivity with low-power, chip-scale
instrumentation that can be mass-manufactured at
minimal cost. By transducing the binding or cleav-
age of tumor-derived analytes-circulating-tumor
DNA fragments, exosomal RNA cargoes, or oncop-
roteins-into voltammetric or impedimetric signa-
tures, these platforms provide linear quantitative
readouts across at least five orders of magnitude,
with limits of detection routinely (47-49).

Such modular devices are operable in outpatient infu-
sion suites, peri-operative theaters, or resource-con-
strained field clinics, thereby eliminating the geo-
graphic and temporal separation between speci-
men collection and molecular insight. The resultis a
compressed diagnostic-treatment loop that recasts
precision oncology as a real-time discipline rather
than a retrospective laboratory exercise, enabling
clinicians to adjust targeted therapies at the pace
of tumor evolution.

The integration of nanomaterials boosts sensor per-
formance through faster electron transfer rates,
increased biomarker capture surface area, and
enhanced signal-to-noise ratio. The development of
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highly sensitive electrochemical biosensors has been
made possible by recent advances in nanostructured
material fabrication techniques. The effective sur-
face area of the electrodes increases through the use
of gold nanoparticles (AuNPs), which also enhances
conductivity and provides a dense platform for sta-
ble biorecognition element immobilization (48, 50).
Research findings from recent studies confirm that
electrochemical biosensors show great potential for
POC oncology testing. Raucci et al. (2024) demon-
strated that acid treated commercial gold electrodes
and AuNPs modified paper-based screen-printed
electrodes can detect the lung-cancer biomarker
miR-2115-3p with a methylene blue based electro-
chemical biosensor. The commercial gold platform
achieved a slightly lower detection limit (=1 nM), but
the paper-based alternative offered comparable ana-
lytical performance at a much lower cost and with
a more sustainable material profile. Both configu-
rations maintained high selectivity against non-tar-
get miRNAs and functioned directly in human serum
(Figure 3A) (50).

Nagdeve et al. created a sensor that measures
microRNA-31which serves as a recognized oral-can-
cer biomarker, while achieving detection limits of
70 pg mL-" in buffer solutions and 700 pg mL-" in
diluted serum solutions, thus meeting the require-
ments for early cancer screening and diagnosis (53).
This study demonstrates how electrochemical bio-
sensors can transform precision oncology by detect-
ing clinically relevant biomarkers in small sample
volumes with high precision. These devices possess
compact dimensions, affordable prices, and smart-
phone-readable functionality, making them appro-
priate for decentralized healthcare operations in lim-
ited-resource environments. The successful clinical
implementation of these devices requires address-
ing three main challenges which include biofouling,
signal drift and calibration stability through sys-
tematic materials development and thorough vali-
dation procedures (54). The integration of electro-
chemical sensors into wearable devices would allow
for the continuous tracking of circulating tumour
DNA which could serve as an early warning system
for cancer relapse in colorectal and other cancer
types. The analyte detection range of electrochem-
ical devices is mainly limited to predefined targets,
although they show high sensitivity for detecting pro-
teins and small-molecule biomarkers. A complete
real-time molecular surveillance system for oncol-
ogy can be developed by combining CRISPR-based
assays with electrochemical devices because CRIS-

PR-based assays provide sequence-specific ampli-
fication-free nucleic acid detection.

CRISPR-based diagnostics, such as the SHERLOCK
platform, detect nucleic acid biomarkers through
Cas enzyme sequence-specific cleavage activity at
single-molecule resolution for point-of-care oncol-
ogy testing. Gootenberg et al. demonstrated in their
research that SHERLOCK detects KRAS oncogenic
mutations at attomolar concentrations through
Cas13arecognition, which leads to collateral reporter
cleavage, thus enabling non-invasive mutation detec-
tion in bodily fluids (55). SHERLOCK demonstrated
88.1% sensitivity and 100% specificity in detecting
EGFR T790M mutations from NSCLC liquid biopsies,
which led to osimertinib therapy decisions in clini-
cal practice (Figure 3B) (51). This technology allows
for the rapid detection of BRAF V600E mutations in
melanoma plasma samples in a short time, support-
ing the timely selection of targeted treatments (56).
CRISPR tools serve dual purposes beyond diagnostic
applications, as they help track drug responses and
monitor drug resistance. A research study showed
that CRISPR/Cas13 technology enables the evaluation
of the biological role of vlincRNAs in drug response,
thus demonstrating CRISPR's capability for moni-
toring treatment effectiveness (57). CRISPR-based
screening platforms identify essential protein-drug
interactions, leading to the discovery of novel ther-
apeutic targets. CRISPR-based systems work along-
side traditional biosensors to detect ctDNA and RNA
sequences with high sensitivity, which expands the
capabilities of POC testing in oncology. The proposed
cloud-based CRISPR analytics system would simplify
the process of mutation profiling for tracking treat-
ment resistance. The advanced detection capabili-
ties of CRISPR diagnostics require microfluidic plat-
forms to integrate multiple detection methods for
complete POC testing applications.

Microfluidic devices or lab-on-a-chip platforms oper-
ate with nanoliter fluid volumes to perform sample
preparation, amplification, and detection functions,
making them suitable for low-sample-volume appli-
cations, such as blood or saliva analysis. Microflu-
idic systems have been used in cancer diagnostics
to detect various cancer-diagnostic factors while
creating suitable nanoparticles for drug delivery,
demonstrating their dual role in cancer diagnosis
and treatment (58). The detection and characteri-
zation of CTCs represent a fundamental application
of microfluidics technology because it helps mon-
itor metastasis and treatment response. Fachin et
al. developed a microfluidic chip to detect and ana-
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of ¢fDNA sample (51); (C) the digital microfiuidic (DMF) system was used for drug screening of biopsy samples from MDA-MB-231 breast
cancer xenograft mouse model and patients with liver cancer (52).
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Table 1. A comparative analysis of essential biomarkers together with detection principles, validated specimen, cancer applications, analytical

sensitivity, specificity and LOD to demonstrate each platform’s translational status and diagnostic potential.

BIOMARKERS Pg:?r::;ligﬁl: VALIDATED CANCER (SENSITIVITY[SPECIFICITY| LOD |REFERENCES
SPECIMEN DETECTED
BCR-ABL1 &
PMLRARA  Crispr EDTAblood/ | o kemia 100 % 100 % NA 61)
fusions dried spots
(APL/CML)
Electrochemically
Glycoprotein controlled Atom Human serum General 032
Tumor Transfer Radical samples (e.g., Alpha- High High : L (62)
Biomarkers  Polymerization P fetoprotein) P&
(eATRP)
EGFR L858R
" Cas12atrans-
T790M 0.005 %
(Cas12a zlseDal\\lI: Zollateral Plasma NSCLC (lung) 100 100 MAF (63)
DETECTR) &
Cas13, Plasma & General 2aM
Cas12a, and EnHuEIELlcéiK-;/iel contrived liquid-biopsy High High nucleic (55)
Csmé6 plexp cfDNA demonstration acid
PO MITE e Human serum Colorectal
CEA electrochemical High High 4 pg/mL  (64)
. samples Cancer
immunosensor
Diluted
AFP (Alpha- e o Q:rr;i? Hepatocellular
. Electrochemical : High High 5pg/mL (65)
Fetoprotein) | hepatocellular Carcinoma
mmunoassay oo
(HCC) patients
Competitive 20
QGY-7701; . General . . cells/mL
QGY-7703 Electrochemlcal Cancer cell Cancer High High & 35 (66)
ensing
cells/mL
Screen-
Sl e =R printed ELISA Patient serum RS NA NA 4ngmL" (67)
ECD i cancer
immunosensor
Microfabricated
aptasensor Serum
combining samples from
EXO0SOMes CD63 capture,  lung cancer
expressin EpCAM aptamer patients 5 %102
CDp63 & g bridging, (early- & Lung cancer  High High exosomes/ (68)
E HCR signal late-stage), mL
pCAM O
amplification, plus cultured
and HRP-TMB cell-line
electrochemical exosomes
readout

CLINICAL / TYPE OF

lyze CTCs in the blood of cancer patients. The chip
successfully captured 95% of EpCAM-positive cells,
allowing genomic analysis for direct trastuzumab
therapy. The microfluidic system proved supe-
rior to CellSearch systems through its enhanced
sensitivity and faster operation, which shows its
capability for real-time metastasis tracking (59).
Zhai et al. developed a portable digital microflu-
idic platform (23 x 16 x 3.5 cm3) that performs par-

allel screening of three anticancer drugs on a 4 x
4 cm2 chip using primary tumour cells. The drugs
that showed effectiveness on the chip device suc-
cessfully reduced tumour growth in animal mod-
els during MDA-MB 231 breast cancer xenograft
and patient-derived liver cancer specimen tests.
The device demonstrated potential for precision
medicine guidance through whole exome sequenc-
ing which confirmed that effective agents main-
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tained their target genes (Figure 3C) (52). Multi-
plex microfluidic platforms enable the simultane-
ous measurement of multiple cancer biomarkers
from microliter-scale samples, thereby supporting
comprehensive diagnosis, early detection, and evi-
dence-based therapy selection in precision oncol-
ogy. Chen et al. used magnetic-bead capture with
acoustic micromixing to measure prostate-specific
antigen and carcinoembryonic antigen in under 20
minutes with detection limits of 0.028 ng mL-' and
3.1ng mL", respectively. These results illustrate the
feasibility of rapid, POC cancer diagnostics based
on multi-analyte profiling (60). The integration of
advanced diagnostic applications through micro-
fluidics can transform precision oncology by clos-
ing therapeutic gaps. Research has demonstrated
its effects on different cancer types, leading to bet-
ter personalized treatments. This technology opti-
mizes clinical operations to deliver enhanced can-
cer care worldwide.

To help synthesize the diverse technologies dis-
cussed, Table 1 provides a summary of the major
POC platforms mentioned, highlighting their clini-
cal application potential. This comparative overview
supports the preceding discussion by visually orga-
nizing the diagnostic scope, sensitivity, and imple-
mentation status of each tool.

REGULATORY AND OPERATIONAL
CHALLENGES

Despite the spectacular analytical sensitivity now
achievable in precision oncology, very few tests have
been validated in prospective (e.g. Guardant360 CDx
for EGFR mutations in NSCLC), and global regulatory
harmonization is lacking. Different regions (EU IVDR,
US CLIA/FDA, 1SO standards) apply varied thresh-
olds for evidence and performance, slowing global
deployment. All of which inflate cost and lengthen
timelines for regulatory submission.

Rigid in-vitro-diagnostic (IVD) frameworks that
were originally drafted around single-analyte infec-
tious-disease strips do not map neatly onto multi-
marker oncology cartridges. The next-generation
POC liquid-biopsy devices must still satisfy U.S.
CLIA-waiver “simple test” criteria while simultane-
ously proving multiplex variant accuracy that nor-
mally requires high-complexity molecular laborato-
ries, a mismatch that slows 510(k)/De Novo submis-
sions and has left only a handful of cancer assays
cleared to date (69).
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Progress is further hampered by the absence of uni-
versally commutable reference materials for ctDNA,
microRNA, and extracellular-vesicle targets. The
integrated lab-on-a-chip review by Surappa et al.
notes that most groups calibrate limits-of-detection
with contrived spike-ins prepared in-house, making
cross-platform performance claims difficult to har-
monize and complicating multi-site reproducibility
studies demanded by regulators (33).
Operationally, the most consistent pain points
involve pre-analytical variability and supply-chain
resilience. Paper-based liquid-biopsy platforms
demonstrate how hemolysis, diurnal swings in EV
release, and freeze-thaw cycles can each shift elec-
trochemical readouts by more than one standard
deviation, forcing manufacturers to integrate on-car-
tridge normalization controls and environmen-
tal sensors, which in turn raise cost and assembly
complexity.

The implementation of POC testing has the poten-
tial to transform precision oncology through bedside
biomarker analysis; however, its adoption remains
limited by major technical challenges. POC devices
must precisely measure trace tumor-derived ana-
lytes, including circulating nucleic acids, in complex
biofluids while functioning in different environmental
settings. The combination of temperature changes
and sample contamination along with environmen-
tal disturbances leads to assay accuracy degrada-
tion which results in unreliable results when tests
are performed outside laboratory control (70).
Finally, real-world deployment in low- and middle-in-
come countries (LMICs) encounters infrastructure
limitations-intermittent power, limited cold-chain
capacity, and scarce biomedical-engineering sup-
port-that can erode field accuracy by up to 20 % rel-
ative to controlled settings. A 2025 review of oncol-
ogy POC implementation in LMICs calls for locally
manufactured consumables, solar-powered readers,
and streamlined post-market surveillance to sustain
diagnostic precision outside tertiary centers (71).
The solution to these barriers requires coordinated
innovation efforts. The adoption process will speed
up through platforms that are accessible to all and
resilient and use unified data standards and adap-
tive risk-based regulatory pathways. The implemen-
tation of scalable workforce training and robust ethi-
cal frameworks will protect data security and ensure
equitable access. The implementation of these pil-
lars will enable POC diagnostics to redefine preci-
sion oncology by providing fast individualized care
across the world.
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Finally, the ecosystem necessary for the success-
ful implementation of POC oncology diagnostics is
inherently complex. It requires coordinated efforts
among diagnostic developers, clinicians, regulatory
authorities, payers, and standards organizations.

FUTURE DIRECTIONS AND
CONCLUSIONS

The next wave of POC precision-oncology devices is
moving toward single-cartridge, ultra-sensitive and
highly multiplexed platforms that couple CRISPR/
Cas recognition, nanomaterial signal amplification,
and fully integrated microfluidics. In the coming 3-5
years, these lab-on-chip architectures are expected
to converge with wearable biosensors-flexible elec-
trochemical patches, microneedle fluidics, or smart-
phone-coupled optical readers, supporting contin-
uous or immediate, on-demand cancer-biomarker
surveillance outside formal clinic walls.

For clinical integration, engineering priorities are
shifting toward closed, sample-to-answer system that
run on finger-stick blood, urine, or saliva and can be
operated by self, nurses or community health work-
ers after minimal training. Bluetooth/FHIR-compli-
ant connectivity will push results straight into elec-
tronic health records and multidisciplinary tumor-
board dashboards, facilitating rapid therapeutic
alignment and longitudinal monitoring without cen-
tralized laboratory dependencies.

Translational success, however, hinges on standard-
ization and regulation. Achieving global health equity
remains a pressing mandate. Although most com-
mercial POC cancer tests are currently configured
for high-resource markets, the greatest diagnostic
gaps existin LMICs. Future development must there-
fore emphasize low-cost readers with battery or solar
power, lyophilized reagents stable at tropical tempera-
tures, and open-source firmware that can be local-
ized for language and connectivity constraints (71).
Collectively, the literature paints a clear trajectory: POC
diagnostics are poised to transform precision oncol-
ogy by collapsing the temporal and geographic gap
between biomarker measurement and clinical action.
The technological capability to match centralized
laboratories in sensitivity is emerging; the challenge
now is to embed these advances into rigorous yet
agile regulatory frameworks, pragmatic clinical work-
flows, and equity-focused distribution models. With
sustained interdisciplinary collaboration and delib-
erate attention to global implementation, POC pre-

cision-oncology testing can redefine cancer care as
a rapid, individualized, and universally accessible
enterprise.
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ABSTRACT: Generative artificial intelligence (GAI) applied to clinical diagnostics and research is reshaping the panorama of precision
oncology. Combining hematoxylin-eosin-stained whole slide images with computational algorithms opens new avenues in digital
pathology. GAl allows for extracting molecular, immunological, and prognostic information based on routinely processed histological
sections and removes the need for additional molecular testing.

In oncology, GAI models excelled in cancer histotyping, malignancy ranking, molecular profiling, identification of prognostic and
predictive biomarkers, and inference of immune gene signatures. The latest foundational models provide additional opportunities
to develop generalizable, scalable tools that can be consistently leveraged in line with pathology missions.

However, several challenges must still be addressed to optimize GAI performance and encourage its clinical application. These
include data quality, algorithm bias, generalizability across institutions, and validation through robust multicenter trials. This strategy
is crucial for increasing clinical confidence, ensuring reproducibility, and facilitating the routine use of Al in precision oncology.
This review focuses on the operational application of computational pathology within the broader context of precision oncology. It
addresses the most significant technical innovations in biomarker assessment and critically examines the priorities to enhance the
reliability, scalability, and performance of Al-driven tools in precision oncology.

Doi: 10.48286/ar0.2025.110 Key words: precision oncology; computational pathology;
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digital histopathology offers novel strategies for biomarker iden-

tification and tumor classification, advancing precision oncology

and diagnostic accuracy.
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INTRODUCTION

Histology is regarded as the gold standard for diag-
nosing human diseases, including cancer (1). In recent
years, the rapid emergence of artificial intelligence
(Al)-driven models in digital and computational
pathology (2) has revolutionized cancer histopa-
thology, significantly advancing both cancer research
and clinical oncology (3, 4).

The integration of Al into surgical pathology is accel-
erating progress across various oncological domains,
including cancer subtyping (5), survival prediction
(6), and detection of nodal metastasis (7). More-
over, deep learning (DL) models have shown the
ability to identify clinically relevant genetic alter-
ations, such as microsatellite instability (MSI) (8) and
multiple gene mutations (9), from hematoxylin and
eosin-stained (H&E) sections (10, 11). Furthermore,
Al-based tools have been developed in oncology,
such as grading in prostate cancer (12) and, more
recently, predicting DNA methylation profiles from
histology sections (13).

In this review, we describe the emerging role of
artificial intelligence in oncology, with a particular
focus on computational histopathology (Figure 1).
We aim to highlight the transformative potential of
Al-driven models in shaping the future of precision
oncology, ultimately supporting more accurate and
high-quality cancer diagnoses.

THE INTRODUCTION OF
SCANNERS IN PATHOLOGY
DEPARTMENTS: THE ROLE OF
WHOLE-SLIDE IMAGES (WSIS) IN
COMPUTATIONAL PATHOLOGY

The introduction of slide scanners for digitizing glass
slides in pathology, along with the growing use of Al
for research and diagnostics, signifies a pivotal shift
in precision oncology. Despite the promise of Al in
clinical workflows, several challenges persist (14).
Adopting new technologies often necessitates
rethinking established practices. In pathology, slide
scanners gradually replace the optical microscope,
the pathologist's primary tool, with digital workflows.
Routine slide digitization generates WSIs of cancer-
ous tissues, serving as a crucial entry point for incor-
porating digital tools in diagnostics (15).

WSl technology enables the application of machine
learning (ML) and dep learning (DL) algorithms to
histopathological images, allowing for clinically rele-
vant data extraction to aid in cancer diagnosis, prog-
nosis, and treatment decisions (16-18). The broader
implementation of WSI is expected to significantly
influence diagnostic pathology, facilitating Al-sup-
ported precision diagnosis (19).

In oncology, DL algorithms have shown the capability
to extract vital information from H&E-stained WSlIs
alone, such as tumor classification and treatment

Al
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Figure 1. Workflow of Al-Based Computational Pathology for Precision Oncology.
Machine learning and deep learning models extract molecular and prognostic insights from H&E-stained whole slide images, supporting
clinical interpretation and outcome prediction. H&E = Hematoxylin and Eosin; WSI = whole-slide images; Al = Artificial Intelligence.
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selection (20), metastatic potential prediction (21),
and identifying primary sites in cancers of unknown
origin (22). Moreover, WSIs allow the extraction of
molecular-level data, including immunohistochemical
and histochemical markers, directly from H&E slides.
This includes predictions of PD-L1and PD-1 expres-
sion (23) and mutational status across cancer types

(24-26). Such tools could soon offer fast, cost-effec-
tive methods to inform personalized treatments.

The integration of slide scanners and routine WSI
use, combined with Al-driven models, presents a sig-
nificant opportunity for both healthcare institutions
and research centers (27). Digital pathology through
WSI technology has the potential to transform can-

Table 1. Summary of published studies applying Al models to histopathology for biomarker prediction and clinical tasks.

STUDY YEAR | CANCER TYPE/TASK | AIMETHODOLOGY |  MAINFINDINGS | REF. |

NSCLC - mutation

Predicted mutations (EGFR,

Coudray et al. 2018 e CNN on H&E STK11, TP53, etc.) and PD-L1 (24)
classification
status
Colorectal - outcome Deep learning on DL model predicted
STl T 2020 prediction WSlIs prognosis with high AUC (©)
Kather et al. 2020 Pan-cqncer - actionable Al on H&E Detectgd multlple.genetlc (10)
mutations alterations from histology
Fu et al. 2020 Pan-cance.r.- mutation CNN on H&E Inferred mutgtlons, cell types (25)
& composition and prognosis
Breast - pathway Deep learning on Predicted mutations and
Queret 2021 prediction WSls signaling pathways (26)
Lu et al. 2021 Ca.ncer of unknown Al on H&E + weak P!’edlcted tissue of origin with (22)
primary supervision high accuracy
Saldanha et al. 2023 Pan-;arjcer - mutation Self-supervised DL AccuraFe predlc'Flon of (11)
prediction genomic alterations
Shamai et d. 202 Breast-PD-LI DL on H&E Al matched [HC PD-LT (52)
prediction expression
Wang et al. 2022 NSCLC - PD-L1 scoring  Multimodal DL AU MECE PreeleEel L= | o)
L1 & survival
van Eekelen etal. 2024 NSCLC - PD-L1 scoring  Cell-level DL A STEITEE [DEHTEr . (56)
reproducibility vs pathologists
. Pan-cancer (20 types) Multiple instance AUC 0.83 on >12k slides,
I &t 2. PD-L1 learning mRNA correlation (57)
. Colorectal - MSI Al-based MSI Validated model for MSI
Saillard et al. 2023 screening detection (MSIntuit)  prediction on H&E (36)
Multi-cancer - multi- Predicted mutations,
GirElEn e el 240722 omic prediction DIEClllakS expression, MSI, CNAs (37)
Pan-cancer - digital . Predicted multiple digital
Hieeeny aren A biomarkers Mk e ikele) biomarkers from WSIs ek
Nakatsuka et al. 2025 NASH - HCC prediction DL on liver biopsies Predlc.ted AICE el lopmeit (69)
years in advance
CNS tumors - DNA . Inferred methylation subtype
Hoang et al. 2024 methylation DL on histology from slides (13)
Amgad et dl. 2024 Breast - prognostic PppuIann-Ievel Created a histological . (75)
biomarker digital pathology biomarker for prognosis
Chen et al. 2024 Pan-cancer - general Foundation model Predicted 108 cancer types (78)

model

(UNI)

from WSils

Al = Artificial Intelligence, CNN = Convolutional Neural Network, DL = Deep Learning, H&E = Hematoxylin and Eosin, IHC = Immunohistochemistry,
ML = Machine Learning, MSI = Microsatellite Instability, NSCLC = Non-Small Cell Lung Cancer, PD-L1 = Programmed Death-Ligand 1,
PD-1= Programmed Cell Death Protein 1, WSI = Whole Slide Image, CNS = Central Nervous System, NASH = Non-Alcoholic Steatohepatitis,
HCC = Hepatocellular Carcinoma, CNA = Copy Number Alteration, mRNA = Messenger Ribonucleic Acid, MSI = Microsatellite Instability,
UNI = Universal foundation model for computational pathology, AUC = Area Under the Curve.
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cer diagnosis and research by converting conven-
tional slides into digital data, laying the groundwork
for computer-assisted diagnostics (28).

WSiIs provide the foundation for fully digitized pathol-
ogy workflows, backed by Al-powered decision-sup-
port systems. These tools leverage computational
histopathology to enhance diagnostic accuracy and
consistency (29). The ongoing digitalization of pathol-
ogy departments, alongside advances in ML and DL,
is poised to accelerate oncological research and fos-
ter the development of Al-assisted diagnostic tools
for various malignancies (30).

ML-MODELS ALLOW THE
PREDICTION OF MULTIPLE
BIOMARKERS FROM WHOLE SLIDE
HISTOPATHOLOGY IMAGES

One of the most intriguing aspects of Al in digital
pathology is its ability to predict multiple biomark-
ers, including mutation status, from H&E-stained
WSIs (2, 11). Recent Al-driven models can now pre-
dict diagnostic and predictive biomarkers such as
immunohistochemical, genetic, epigenetic, and in
situ hybridization markers. Traditionally, identifying
these biomarkers requires manual assessment by
trained pathologists, a time-consuming and costly
process that can delay diagnosis and treatment.
The progressive adoption of digital pathology has
been complemented by the development of an alter-
native approach, whereby Al models analyze rou-
tinely acquired H&E-stained WSlIs to extract multi-
ple predictive biomarkers. These include key molec-
ular features that are instrumental in-patient strat-
ification for targeted therapies (31-33). This para-
digm shift has revealed that H&E-stained sections,
long considered tools primarily for morphological
assessment, contain a rich reservoir of latent molec-
ular information.

WSIs can now support automated disease detection,
histological and molecular subtyping, and tumor
grading, as well as prognostic evaluation, survival
prediction, and treatment planning (33). Al models
trained on H&E-stained WSIs have demonstrated
the ability to predict a range of molecular biomark-
ers across different cancer types (34-36). Addition-
ally, emerging studies suggest that WSIs may also
be used to infer other molecular alterations, such as
RNA expression patterns and protein abundance (37).
While initial efforts focused on models trained to
predict a single biomarker in a specific cancer type,

newer frameworks now predict multiple biomarkers,
including copy number alterations and RNA-derived
signatures, across various malignancies (38). These
findings emphasize the vast, clinically relevant data
embedded in standard H&E-stained slides. Table 1
provides an overview of significant studies utilizing
Al for biomarker prediction, tumor classification,
and outcome forecasting across diverse cancers.
Given the widespread use of H&E-stained slides
in pathology laboratories globally, digitizing these
images could enable the deployment of Al-driven
biomarker prediction models even in low-resource
settings, potentially benefiting a broader patient
population.

DL-MODELS APPLIED TO THE
PREDICTION OF PD-1 AND PD-L1
EXPRESSION BASED ON H&E-
STAINED SECTIONS

The immune system maintains a balance between
eliminating harmful pathogens and preserving
self-tolerance, regulated by immune checkpoints
like PD-1(39). PD-1, a key checkpoint receptor, mod-
ulates T-cell activity to maintain peripheral toler-
ance, preventing autoimmune responses (40, 41).
The identification of PD-1 and its ligand PD-L1 in
tumor cells, first reported in 2002, unveiled a criti-
cal mechanism of immune evasion by which tumors
exploit immune checkpoint pathways to evade
immune surveillance (42). PD-L1 is predominantly
expressed on the surface of tumor cells but can
also be released in the tumor microenvironment via
exosomes, amplifying immune suppression (43, 44).
Given its role in promoting tumor immune escape,
PD-L1 has become a major target in cancer immu-
notherapy (45-48).

Traditionally, PD-L1 expression is assessed through
immunohistochemistry (IHC), which remains the
standard in clinical practice (49-51). However, despite
its widespread use, IHC presents several challenges:
it is time-consuming, costly, and may deplete limited
tissue samples, particularly in small biopsies. Fur-
thermore, interpretation of PD-L1 staining is prone
to significant variability due to differences in stain-
ing protocols, subjective interpretation of staining
intensity, and interobserver variability, especially
in borderline cases (52, 53). This inconsistency can
critically impact clinical decision-making, potentially
misclassifying patients and affecting their eligibility
for immune checkpoint inhibitors.
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Digital pathology and Al-driven models offer a prom-
ising alternative, providing a more standardized and
reproducible assessment of PD-L1 expression by ana-
lyzing WSIs across multiple tumor regions (54). Unlike
manual scoring, Al models can systematically quan-
tify PD-L1 expression across heterogeneous tumor
regions, reducing variability and enhancing diag-
nostic accuracy. For instance, Al algorithms applied
in lung cancer demonstrated high accuracy in pre-
dicting PD-L1 status, aligning closely with patholo-
gist assessments even in challenging cases (55, 56).
A pivotal study by Jin et al. introduced a pan-can-
cer Al model capable of predicting PD-L1 expres-
sion directly from H&E-stained WSlIs, analyzing over
12,000 slides from 20 tumor types and achieving a
mean area under the curve (AUC) of 0.83 (57). The
model’s predictions were validated against conven-
tional IHC and mRNA expression, underscoring the
potential of Al to standardize biomarker assessment
and minimize interobserver variability.

Table 2 summarizes selected studies comparing
Al-based digital pathology approaches with conven-
tional immunohistochemistry for PD-L1assessment
across different tumor types.

This shift toward Al-driven PD-L1 evaluation reflects
the emerging paradigm of “intelligent digital pathol-
ogy”, where Al augments conventional diagnostics,
potentially accelerating therapeutic decision-mak-
ing, expanding access to precision oncology, and
ensuring more consistent biomarker assessment
across diverse clinical settings (32, 58, 59).

The clinical integration of this approach is partic-
ularly relevant in the context of therapeutic deci-
sion-making. By predicting multiple biomarkers,
including immune checkpoint-related proteins and
mutational profiles, from routine H&E-stained slides,
Al-driven pathology can guide the selection of tar-
geted therapies or immunotherapies. For instance,
in advanced non-small cell lung cancer or gastric can-
cer, accurate prediction of PD-L1 expression or MSI
status directly from histology can streamline treat-
ment eligibility decisions and reduce dependence on
costly or time-consuming molecular assays (24, 36,
52, 55, 57). Additionally, in multidisciplinary oncol-
ogy settings, integrating Al-generated outputs into
tumor board discussions may enhance personal-
ized care planning, particularly when biopsy mate-
rial is limited or when rapid turnaround is needed.

Table 2. Comparison between immunohistochemistry (IHC) and Al-based digital pathology for PD-L1 assessment.

FEATURE IMMUNOHISTOCHEMISTRY AI-BASED DIGITAL PATHOLOGY
(IHC) (ON H&E WSIS)

Sample
requirement

Requires additional antibody-based
staining

Tissue
consumption

Consumes precious tissue, critical in
small biopsies

High costs due to antibodies,

Ses reagents, and specialized equipment

Turnaround Time-consuming due to staining and

time manual interpretation

Expertise Requires experienced pathologists

required for accurate interpretation

Interpretation High inter- and intra-observer

variability variability

Accessibility Often unava|lable. in peripheral or
low-resource settings

Multiplexing  Generally limited to one biomarker

capability per slide

Moleculfar Direct protein expression detection

correlation

Scalability and

: Manual, slow, and hard to scale
automation

Uses routine H&E-stained slides already  (49-51)/
available in pathology labs (24, 57)
No additional tissue required; preserves  (52)/
material for other tests (23/37)
Lower long-term costs after digitization (53)/
infrastructure is in place (24, 57)
Faster analysis after digitization and (52)/
model deployment (23, 55, 57)
Al supports interpretation; reduces (52, 53)/
reliance on specialist expertise (54, 56)
Provides standardized, reproducible (53)/
results (54, 56)
H&E-based Al tools are scalable and (52)/
suitable for resource-limited contexts (24, 57)
Potential to predict multiple biomarkers  (49-51)/
from a single H&E image (25, 26, 36-38)
Can predict mRNA expression, mutation  (50)/
status, and other molecular features (37, 38, 57)
Fully automatable and scalable across (52)/

large datasets (23, 54, 57)

IHC = Immunohistochemistry, Al = Artificial Intelligence, H&E = Hematoxylin and Eosin, WSI = Whole Slide Image, mRNA = Messenger

Ribonucleic Acid.
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DEEP LEARNING APPLIED TO
DIGITAL PATHOLOGY IN THE
PREDICTION OF HCC

Non-alcoholic steatohepatitis (NASH), a progressive
form of non-alcoholic fatty liver disease (NAFLD),
is now recognized as the leading cause of chronic
liver disease and a key risk factor for hepatocel-
lular carcinoma (HCC) (60). Histologically, NASH is
marked by macrovesicular steatosis, lymphocytic
infiltration, hepatocellular ballooning, apoptotic
bodies, and varying degrees of fibrosis (61). Tra-
ditionally, fibrosis has been considered the stron-
gest predictor of adverse outcomes, including cir-
rhosis and HCC (62, 63). However, over 50% of
NASH-related HCC cases arise in non-cirrhotic liv-
ers, indicating that other histological and molec-
ular features beyond fibrosis may drive carcino-
genesis (64, 65).

Recent Al-based models have been applied to
the automated assessment of liver fibrosis and
other NASH-related histological changes, demon-
strating ML techniques’ key advantage in provid-
ing objective, quantitative evaluations that reduce
interobserver variability and support more consis-
tent longitudinal disease monitoring (66, 67). DL
approaches, in particular, have shown significant
promise in identifying subtle histological markers
associated with early carcinogenesis that may be
missed in conventional assessments, extending
predictive capabilities beyond fibrosis and nodu-
lar regeneration (68).

A significant study by Nakatsuka et al. explored a
DL model to predict HCC development using only
H&E-stained WSIs of liver biopsies from steatosis
patients (69). The model aimed to identify individu-
als at higher HCC risk solely based on liver steatosis
analysis, achieving an AUC of 0.80 for predicting HCC
onset within seven years post-biopsy. Notably, the
model identified at-risk patients without advanced
fibrosis, underscoring the role of additional histo-
logical features in liver tumorigenesis.

Through saliency map analysis, the model highlighted
key predictors of HCC development, including a high
nuclear-to-cytoplasmic ratio, nuclear atypia, lym-
phocytic infiltrates, and the absence of large lipid
droplets. These findings suggest that Al models can
detect subtle histological changes predictive of liver
cancer risk in routine biopsies, potentially without
expensive molecular assays (69).

This work emphasizes two critical points: first, Al
algorithms can extract complex histological signals

indicative of future disease progression; second,
integrating Al with digital pathology, or computa-
tional pathology (CPath), may revolutionize liver his-
topathology by enhancing diagnostic accuracy, aid-
ing prognostic stratification, and supporting preven-
tive strategies in NASH-related HCC (69).

TOWARDS A GENERAL
FOUNDATION MODEL FOR
COMPUTATIONAL PATHOLOGY

In routine clinical practice, pathologists are responsi-
ble for a broad spectrum of diagnostic tasks, includ-
ing cancer detection, subtyping, grading, and stag-
ing. These tasks require consideration of thousands
of potential differential diagnoses. To address these
challenges, a wide range of Al models have been
developed in recent years, particularly within the
domains of digital and computational pathology (70,
71). Among the most promising innovations is the
development of Al-driven models capable of multi-
modal data integration, which should combine clin-
ical, genomic, epigenomic, radiomic, pathomic, and
microbiological data to provide a more comprehen-
sive view of the oncologic landscape (72). Compu-
tational pathology (CPath) has demonstrated the
potential to predict molecular alterations directly
from histopathological images, including microsat-
ellite instability (MSI) (8, 73, 74), patient prognosis
(75), and treatment response (76). However, most
of these models are trained for a specific cancer
type and are limited to predicting a narrow set of
molecular or immunohistochemical features, which
restricts their applicability in diverse clinical con-
texts. To overcome these limitations, a new class
of Al tools has emerged: multi-cancer, multi-bio-
marker models designed to simultaneously pre-
dict a wide range of molecular alterations across
various tumor types using standard H&E-stained
slides (39). These systems, defined as “foundation
models,” are characterized by their scalability, ver-
satility, and adaptability to multiple diagnostic tasks
and cancer types (77). In this direction, a gener-
al-purpose foundation model for computational
pathology, defined as UNI, has been recently intro-
duced by Chen TJ and colleagues (78). Pretrained
on over 100 million images, the UNI model demon-
strated the capacity to classify up to 108 cancer
types, marking a significant advancement toward
the integration of Al into routine workflows in ana-
tomic pathology Labs.
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COMPUTATIONAL PATHOLOGY IN
ONCOLOGY

Artificial intelligence has emerged as a revolution-
ary tool for the discovery of predictive biomark-
ers in human cancers. Al-based methods are rede-
fining the landscape for researchers, pathologists,
and oncologists, demonstrating the potential of
well-trained algorithms to extract clinically rele-
vant molecular information directly from routinely
stained H&E sections.

When applied to clinical practice, the advantages
of this paradigm shift are numerous. One of the
most significant is the speed of analysis: the aver-
age computational time to generate a PD-L1 prob-
ability map has been reported at approximately 40
seconds, with a range from 7.9 to 66 seconds (79).
This indicates that, with a robust and validated DL
model, pathologists could provide near-instanta-
neous estimates of PD-L1 expression, facilitating
timely and personalized therapeutic decisions for
oncologists (87).

In addition to rapidity, Al-based approaches offer
substantial cost-saving opportunities. The reliance on
conventional immunohistochemistry, dependent on
specialized reagents, equipment, and trained person-
nel, may be significantly reduced or even replaced.
The possibility of identifying genes and immune-re-
lated biomarkers, such as PD-L1, directly from H&E
sections without antibody-based detection opens
intriguing transformative possibilities, particularly
for decentralized and resource-limited settings.
Furthermore, Al-driven histopathological analy-
sis enables the extraction of novel insights beyond
PD-L1 expression, potentially enhancing clinical deci-
sion-making. Immune pathology, a key founda-
tion for immune checkpoint inhibitor (ICl) thera-
pies, remains a relatively underexplored area within
diagnostic pathology. Al methodologies could facil-
itate the identification of novel “metabiomarkers”,
complex, integrative features predictive of ICl ther-
apy response (82). This hypothesis is supported by
recent evidence showing that DL models can pre-
dict immune and inflammatory gene signatures in
hepatocellular carcinoma directly from histologi-
cal images (83).

Taken together, these findings underscore the poten-
tial of Al, particularly DL algorithms, to extract multi-
ple molecular and immunological biomarkers from
standard histology, enabling the discovery of novel
predictive features and advancing the goals of pre-
cision oncology. Computational pathology (also
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referred to as pathomics) thus represents a unique
opportunity: to serve as a rapid, cost-effective, and
integrative diagnostic tool for clinicians, oncolo-
gists, and surgeons alike, delivering morphologi-
cal, genetic, and molecular data in near real time.
Another major strength of computational pathology
lies in its ability to generate large-scale datasets of
digitized slides, which can be integrated with com-
plementary clinical (real-world data), genomic, epig-
enomic, microbiologic, radiologic (radiomics), and
laboratory information. This multimodal integra-
tion offers the potential to define novel metabio-
markers, which can outperform unimodal mod-
els in terms of predictive accuracy, as measured by
improved AUC metrics (76).

Moreover, computational pathology can address a
long-standing challenge in diagnostic histopathol-
ogy: interobserver variability. This is particularly rel-
evant for PD-L1 scoring, which is known to vary sig-
nificantly among both expert and generalist pathol-
ogists (84-86). While DL models can provide more
consistent and standardized assessments of PD-L1
expression, their capacity to directly infer molecular
and transcriptomic features from histology offers a
far more transformative leap than simply resolving
variability issues.

For successful adoption in clinical practice, Al-based
computational pathology systems must be inte-
grated into existing digital workflows within pathol-
ogy departments. This includes embedding Al mod-
els into slide viewers and laboratory information sys-
tems (LIS), allowing pathologists to access real-time
predictions directly from digitized H&E slides. Addi-
tionally, the deployment of Al tools should be sup-
ported by intuitive, clinician-oriented interfaces that
facilitate interpretation and integrate seamlessly into
the diagnostic process. Real-world implementation
also requires rigorous prospective validation stud-
ies and standardized protocols to demonstrate clin-
ical utility. Importantly, Al-driven solutions should
be designed to complement rather than replace
human expertise, acting as decision-support tools
that enhance diagnostic accuracy, reproducibility,
and efficiency in oncology care.

NEXT CHALLENGES

Along with its unquestionable advantages, the
real-world implementation of computational his-
tology entails several major issues that need to be
addressed before Al models can be safely and effec-
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tively integrated into clinical practice, particularly
within the field of immuno-oncology. The major
current limitations hindering clinical implementa-
tion are summarized below:

1. Data Quality and Availability: robust algorithm
performance requires access to large volumes of
high-quality, well-annotated data. However, onco-
logic datasets are often incomplete, heterogeneous,
biased, and inherently complex, limiting model gen-
eralizability and reproducibility.

2. Model Selection Complexity: the proliferation of
ML and DL algorithms, often promoted through mar-
keting strategies emphasizing innovation rather than
practical limitations and clinical safety, can make it
challenging for researchers and clinicians to select
the most appropriate model for specific applica-
tions. While advanced DL models are widely mar-
keted as cutting-edge solutions, classical ML mod-
els may outperform them in low-data scenarios and
should not be overlooked, particularly when sam-
ple sizes are limited (87).

3. Regulatory Certification: certification is a critical
prerequisite for clinical adoption. At present, there
is no universally accepted regulatory pathway for
the validation and certification of Al-based tools in
pathology. The establishment of worldwide (or at
least continental-wide) standardized, harmonized
processes for model certification should be encour-
aged to ensure safety and efficacy.

4. Lack of Guidelines and Protocols: clear proto-
cols and guidelines for conducting rigorous, clini-
cally meaningful studies on Al model applicability
are currently lacking. This gap hinders reproduc-

ibility and delays the translation of research find-
ings into clinical practice.

5. Lack of Trust and Interpretability: a significant
barrier to clinical implementation is the skepticism
among healthcare professionals, including patholo-
gists, regarding the reliability and transparency of Al
tools. Improving model interpretability is essential
to foster trust. Techniques from the field of explain-
able artificial intelligence (XAl) may help to demystify
algorithmic decision-making and reduce the “black
box" effect (88, 89).

6. Insufficient External Validation: Al models that
perform well on internal datasets often fail when
applied to external, real-world data. To ensure clin-
ical robustness, models should be validated using
diverse, multi-institutional datasets. One proposed
strategy is divergent validation, which evaluates
model performance across various independent
datasets to enhance generalizability and transpar-
ency (90, 91).

6. Bias and Variability: algorithmic biases can result
from inconsistencies in slide staining, errors in label-
ing the data sets used for training, scanner calibra-
tion, or demographic imbalances in training data.
These factors can significantly impair model perfor-
mance and reliability. Reducing such biases is cru-
cial to enable fair and accurate deployment of Al
models in clinical settings.

Despite these several interconnected limitations,
the primary obstacle hindering the widespread
use of Al strategies in clinical practice is the lack of
standardized and universally accepted pathways
for validation and certification. Without clear regu-

Table 3. Current challenges and proposed solutions for the clinical integration of Al in computational pathology.

CHALLENGE DESCRIPTION SUGGESTED SOLUTIONS | REF. |

Data Quality Incomplete, biased,

Model Selection
models

Certification
pathways

heterogeneous datasets
Difficult choice among ML/DL

Lack of standard regulatory

Centralized data curation and

Lack of clinician trust due to

Trust and Interpretability black-box nature

Interobserver Variability (e.g., PD-L1 scoring)

External Validation datasets

Staining and demographic biases

Variability in human assessment
Limited generalizability across

Bias in data acquisition and
population representation

federated learning (1,92)
Model comparison guidelines, (89)
model benchmarking

International consensus on Al

model validation

XAl, transparent algorithms (90-91)
Algonthm.lc stqndard|zat|on, (86-88)
model calibration

Multi-institutional validation, (90-91)

divergent validation

Dataset balancing, domain
adaptation techniques

ML = Machine Learning, DL = Deep Learning, Al = Artificial Intelligence, PD-L1 = Programmed Death-Ligand 1, XAl = Explainable Artificial

Intelligence.
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latory guidance and robust multicenter validation
studies, many Al-based models remain restricted to
research settings. This uncertainty, coupled with a
lack of transparency in algorithmic outputs, contin-
ues to undermine clinician trust and delays the full
integration of Al into routine oncologic diagnostics.
The key limitations currently hindering the imple-
mentation of Al in clinical workflows, along with pro-
posed solutions, are summarized in Table 3.

CONCLUSIONS

The introduction of Al-driven models has triggered
a true revolution in oncology, with applications
spanning from the interpretation of medical imag-
ing to the enhancement of diagnostic and prognos-
tic accuracy, including prediction of overall survival
and response to various therapeutic strategies (92).
Among these tools, convolutional neural networks
(CNNs) have emerged as indispensable new tools
for the recognition and classification of both histo-
logical and radiological images. CNNs can detect
subtle and complex patterns that may escape even
the most experienced pathologists and radiologists.
A key strength of CNNs lies in their ability to auton-
omously learn from data, particularly when trained
on large, high-quality datasets. This has enabled
a shift from traditional machine learning towards
deep learning in medical image analysis. CNNs have
demonstrated outstanding performance in tasks
such as cancer detection, histological classification,
and subtype recognition.

More recently, advanced CNN-based architectures
have achieved notable success in cancer diagnostics.
For instance, CNNs combined with Long Short-Term
Memory (LSTM) networks have shown promise in
predicting cancer prognosis by capturing temporal
patterns in patient data. Spatially Constrained CNNs
(SC-CNNs) have proven effective for nuclei classifi-
cation in colorectal cancer, enhancing precision in
histopathological assessment. Moreover, the inte-
gration of CNNs with Fourier Transform Infrared
(FTIR) spectroscopy has yielded promising results
for accurate cancer detection in biopsy specimens.
Taken together, these developments highlight the
transformative role of Al in advancing precision
oncology, in which context pathology assumes a piv-
otal role. Manual interpretation of medical images
remains susceptible to human error and interob-
server variability. In this context, Al-based method-
ologies, particularly those leveraging CNNs, offer
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robust solutions to improve diagnostic consistency
and uncover patterns beyond human perception.
These innovations pave the way for more refined,
data-driven approaches to cancer detection, classifi-
cation, and treatment selection, ultimately support-
ing the realization of a truly personalized oncology.
This constellation of technological advancements fos-
ters a more data-driven, patient-centered approach
to precision oncology. It creates a new medical uni-
verse that aligns with tailored cancer care’s ethical
and scientific mission. Pathology plays a pivotal role
in this evolving “computational” landscape, echo-
ing the transformative impact once initiated by Vir-
chow’s microscope.
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ABSTRACT: in recent years, imaging techniques have been successfully used to deliver diagnostic biomarkers with even greater
accuracy. In particular, radiomic analysis methods (application of artificial intelligence on radiological images), which describe a
segmented tumor region, using various quantitative characteristics derived from radiological images, have shown great potential
in the identification, characterisation/classification of different types of cancer and in evaluating the response to radiotherapy and
chemotherapy. Liquid biopsy is used for both early screening of malignancy and diagnosing minimal residual disease. It is also
performed to assess and monitor the response to pharmacological treatments for a personalised therapeutic strategy. The analysis
of morphostructural data obtained by imaging, correlated with the genetic/molecular results of liquid biopsy, could provide useful
predictive factors for early diagnosis and predicting the response to anti-cancer drugs. The study aims to design and develop a
report structured in CT with contrast media, which includes, in addition to the subjective evaluation of the radiologist, a quantitative/
objective assessment of lung cancer (LC) with features that describe the texture and morphology of the lesion. Therefore, we present
a workflow aimed at extracting the DICOM images acquired with CT using contrast medium from a significant number of patients,
and to evaluate their accuracy in characterising the LC lesions. Furthermore, these data will be correlated to gene mutations and
epigenetic changes (DNA methylation) evaluated in circulating tumour DNA derived from peripheral blood with a liquid biopsy
approach. The correlation between radiomic characteristics, quantitative analysis of tumours performed by CT, structured lesion
reports, and liquid biopsies could help avoid many unnecessary biopsy procedures and enable personalised treatment of LC patients.
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notherapies have been developed due to the discov-

BACKGROUND

Lung cancer (LC) represents a leading cause of death
worldwide, contributing to a high percentage of can-
cer-related deaths in both sexes (1). However, over
the last decade, novel targeted therapies and immu-

ery of different mutations and aberrations in driver
oncogenes (2, 3). Based on this, molecular testing
and clinical biomarkers are now routinely used in
clinical practice for the management of advanced
LC, including the search for activating mutations
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of epidermal growth factor receptor (EGFR), BRAF,
HER2, MET, ERBB2 and KRAS, rearrangements of ana-
plastic lymphoma kinase (ALK) and ROS proto-onco-
genel (ROST) as well as fusions of NTRK1-3 genes (4,
5). Unfortunately, a large proportion of patients have
an advanced disease, especially stage Ill, at diagno-
sis, thus excluding tumor resection opportunities (6,
7). In these cases, the available tumour tissue that
can be used for molecular testing is often limited,
being represented by small needle core biopsies or
cytology specimens due to the risks associated with
biopsy procedures involving the lung. However, the
collection of sufficient material for diagnosis, sub-
typing, and characterisation is mandatory, and when
not available, repeating the diagnostic procedures
can lead to delayed decision-making in creating an
algorithm. This can lead to detrimental effects on
the clinical outcome of the patients, especially in
stage |, Il LCs in which the molecular diagnosis is
essential for treatment decisions. In fact, in stage
Il LC, concurrent chemoradiotherapy (CRT) associ-
ated with the immunotherapy represents the pre-
ferred treatment, being proven to increase the over-
all survival of the patients if compared to radiother-
apy alone. The rapidity of the best therapy choice is
essential in these cases, considering that the optimal
and personalised treatment of stage Il LC patients
is critical for achieving disease downstaging, which
allows for subsequent surgical resection. The diag-
nostic delay can lead to a loss of the therapeutic win-
dow and subsequent opportunities for neoadjuvant

treatment.Therefore, the availability of a diagnos-
tic technique that enables a rapid definition of the
diagnostic workflow is essential for informed treat-
ment decision-making. Methodologies based upon
liquid biopsy fulfil this role by allowing a wide range
of molecular assessments through a minimally inva-
sive procedure (8, 9). Different body fluids can be
used for liquid biopsy, including saliva, cerebrospinal
fluid, and, more often, peripheral blood. The latter
is collected to obtain intact circulating tumour cells
or their products, including circulating cell-free DNA
(cfDNA), circulating tumour DNA (ctDNA), circulating
mMiRNA, exosomes, extracellular vesicles, and others
(10, 11). These products could subsequently be used
in diagnosis, prediction of response, monitoring of
treatment, and assessment of mutational status
before and during the various treatments to which
patients are subjected. Therefore, liquid biopsy is
highly attractive for assessing both the tumour biol-
ogy and molecular status of LC, both at single or
multiple time points (e.g., at diagnosis or relapse).
For instance, it is established that LC demonstrates
genomic instability with the progressive acquisition
of genetic alterations (including point mutations,
chromosomal instability and epigenetic alterations),
although at varying rates, resulting in the develop-
ment of genetic changes during the clinical evolu-
tion of the disease, as well as due to the effects of
the different treatments. In stage Il LC, these alter-
ations can contribute to clonal evolution and resis-
tance development, emphasizing the need for the
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Figure 1. Workflow of the LIDIA project, from patient enrollment to data analysis, Al modelling, clinical validation, and personalized treatment.
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continuous tracking of LC molecular profile during
treatment. The selection of resistant clones during
therapy represents a significant mechanism for the
development of treatment resistance and disease
progression. Moreover, given the increasing role of
targeted therapy, the monitoring of the molecular
profile of the disease is of paramount importance to
identify resistance mechanisms. Therefore, all test-
ing strategies that offer a safe modality for assess-
ing LC biology are likely to be of significant clinical
interest. An example is provided by the observation
that approximately 15% of LC, particularly advanced
non-small cell lung cancers (NSCLCs), display acti-
vating EGFR mutations, which can be targeted by
tyrosine kinase inhibitors (TKIs). Liquid biopsy can
be used not only to determine the presence of acti-
vating EGFR mutations in treatment-naive patients
for whom the tissue sample is insufficient or inade-
quate for molecular analysis, but also in patients who,
after disease progression to first- or second-gener-
ation TKis, develop resistance mechanisms.

The identification of EGFR mutations is also crucial
for the management of early-stage NSCLC patients
who may be candidates for adjuvant therapy with
the latest-generation TKI, Osimertinib. Moreover, the
potential incorporation of liquid biopsy techniques
into screening algorithms, both for routine popu-
lation screening and for therapy monitoring, rep-
resents an extremely attractive approach and an area
of active investigation with promising early results.
Liquid biopsy has definite and clinically relevant
applications for the management of LC, particu-
larly in stage Ill and other advanced stages, as well
as in early-stage disease; however, its use is lim-
ited by cost, technical challenges, and availability.
Therefore, although it is highly predictable that lig-
uid biopsy will play a significant role in diagnosis,
response assessment, and ongoing surveillance in
the future, the available data are still inconclusive.
Liquid biopsy techniques offer an excellent com-
bination of convenience and safety for molecular
profiling, reducing the need for invasive and techni-
cally complicated tissue sampling. This information
can be combined with data from imaging of tumour
lesions to improve the diagnostic definition of the
disease, allowing for molecular subtyping and pre-
dicting response to therapies.

Another critical challenge of the present study is
determining the epigenetic alteration of cfDNA based
on its methylation profile. Epigenetic modifications
are considered a hallmark of cancer and are found
in early stages of disease, tumour progression, and
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metastasis formation. DNA methylation is a tissue-
and cancer-specific modification and, in contrast to
the heterogeneity of gene mutations, appears to be
similar in cancer cells of the same type and tissue
origin (12, 13). Genome-wide methylation analysis
using the bisulfite conversion method of cfDNA has
been previously employed for cancer diagnosis (14).
However, this method is expensive, time-consuming,
and requires large amounts ofcfDNA. An innovative
and highly sensitive alternative is offered by using
cell-free methylated DNA immunoprecipitation with
anti-5mC antibodies and subsequent high-through-
put sequencing (cfMeDIP-seq) (15) to assess the meth-
ylation profile, even with low cfDNA input. Differen-
tially methylated regions (DMRs) have been used to
construct classifiers that can identify patients with
several cancers (15, 16). Therefore, one of the objec-
tives of the present study will be to use cfMeDip for
the early diagnosis, determination of minimal resi-
due disease, and histological subtyping of patients
with LC, and to correlate these results with radio-
logical imaging.

Based on these advances, this study aims to evalu-
ate the diagnostic accuracy of chest CT in the mor-
pho-structural characterisation of stage Ill LC. By
extracting radiomic capabilities related to the struc-
ture and morphology of the lesions, the observation
aims to correlate this information with the results of
genetic, epigenetic, and molecular analyses obtained
through liquid biopsy.

METHODS/DESIGN

The concept of a single-site biopsy to monitor dis-
ease dynamics during therapy is practically unfea-
sible, as it is invasive and may result in an under-
estimation of heterogeneity. On the other hand, a
liquid biopsy based on the analysis of circulating
tumour cells or tumour macromolecular products
reflects the mutational status of the overall disease
sites, allowing for the identification of emerging sub-
clones responsible for treatment resistance. Addi-
tionally, radiomics has emerged as a novel field of
research dealing with the extraction and analysis of
specific features from diagnostic images, potentially
reflecting the pathophysiological processes and the
heterogeneity of tumour genetics.

The combined approach of radiomics and liquid
biopsy has the potential to elucidate the dynamics
of molecular lesions, thereby supporting informed
clinical decision-making (17, 18).
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Table 1. Overview of Study Phases and Methodologies.

| PHASE | DESCRIPTION TECHNIQUES / TOOLS

Data Collection
Radiomic Analysis
Genetic Analysis

Prediction of
Outcomes

Aims and objectives

The project aims to create a structured reportin CT
with contrast media, which includes, in addition to
the subjective evaluation of the radiologist, a quan-
titative/objective assessment of the lung tumour
with several features that describe the texture and
morphology of the lesion (19, 20).

Therefore, as shown in Figure 1, the project aims to
extract the DICOM images acquired with CT with con-
trast medium, from a significant number of patients,
with a particular focus on stage Il LC, for the sub-
sequent evaluation of their accuracy in the char-
acterisation of LC malignancy. Furthermore, in the
same patients, the molecular analysis of the genes
involved in LC will be performed on DNA extracted
from a peripheral blood sample (21, 22).

The correlation between radiomic characteristics,
quantitative analysis of tumours performed by CT,
structured lesion reports, and liquid biopsies could
help avoid many unnecessary biopsy procedures
(23, 24).

Study design

This section outlines the techniques and protocols

of our experimental study, aimed at integrating sci-

entific, molecular, and imaging records to assess the

diagnostic accuracy of CT scans and liquid biopsy

in LC management, with a selected emphasis on

stage Il cases.

Inclusion criteria:

- Age 218 years

- Full understanding of the study and signed
informed consent

- Presence of a neoplasm requiring further diag-
nostic evaluation

- Availability to undergo liquid biopsy.

Exclusion criteria:

- Allergies to contrast media

- Inability to maintain immobility during the exam
- Pregnancy or breastfeeding

Collection of clinical data, imaging, and biopsy samples
Extraction of radiomic features from imaging data
Study of genetic mutations through liquid biopsy

Combination of data to predict therapeutic outcomes

Clinical Records, CT Imaging, Liquid Biopsy
Pyradiomics, ITK-SNAP
PCR, Sequencing

Machine Learning Models, AUC

- Risk factors for contrast nephropathy (GFR <60
ml/dl)
- Known allergy to contrast agent.

Recruitment Process

In the first year, from the first bimonthly period to
the sixth, the two Diagnostic Imaging Units will be
responsible for enrolling hospitalised patients who
undergo CT-guided biopsy for suspected lung can-
cer. The CT investigation will be performed before
histopathological sampling, to obtain information
regarding morpho-densitometric characteristics of
the lesion and to plan the subsequent biopsy pro-
cedure (25-28).

Prior to treatment administration and molecular
pathology assessments, all patients provided written
informed consent. The study was approved by the
Ethics Committee “Comitato Etico Universita degli
Studi della Campania Luigi Vanvitelli” (approval No.
24997/2020) on 11t November 2020.

The recruitment and collection phase of clinical
anamnestic data will be performed in a specific
DICOM file (structured report) and will start after
Informed Consent has been signed by the patient.
Informed Consent will be accurately prepared for
this study by the Pl and substitute PI.

Imaging Acquisition and Analysis

Once the CT imaging has been acquired, the DICOM
images will be evaluated by the Pl and the Deputy
PI from the first to sixth bimonthly period of the
first year. From the second to the sixth bimonthly
period of the first year a quantitative analysis of the
lung lesion will be performed with an artificial intel-
ligence system capable of identifying the tumor on
the CT image, calculating its diameters and volume
in a semi-automatic way.

Subsequently, the radiologists assisted by the engi-
neer of the second research unit, will export the CT
images. This phase will take place from the third
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to the sixth bimonthly period of the first year. The

images exported by the individual research units will

be archived using a ‘GDPR compliant’ Cloud system
that will be developed ad hoc for the study.

The cloud platform comprises:

- Storage Section: Secure archiving of DICOM files,
structured reports, and genetic data.

- Computing Section: An online application for struc-
tured reporting, integrating clinical and anam-
nestic information, ensuring standardized pro-
cedures and simplifying radiomics/radiogenom-
ics analysis.

Following the data extraction, during the period
from the fifth to the fourth two-month period of
the first year to the second year, the Department
of Electrical Engineering and Information Technol-
ogies at the University of Federico Il will carry out
the computational analysis of the tumour volume
to extract the radiomics features. Subsequently,
from the sixth bimonthly period of the first year to
the fourth bimonthly period of the second year, the
same Department will carry out the classification
of radiomic features with Machine Learning tech-
niques. Finally, from the sixth bimonthly period of
the first year to the third bimonthly period of the
second year, these data will be processed and ana-
lysed to predict tumour characteristics.

Peripheral venous blood samples can be gathered
throughout imaging acquisition to evaluate liquid
biopsy molecular data. Plasma samples will be stored
in two laboratories to maintain ctDNA integrity:

- Molecular and Precision Oncology Laboratory

(Vanvitelli University and Biogem scarl)
- Cytology and Predictive Molecular Pathology Lab-
oratory (Federico Il University).

Furthermore, from the fifth two-month period of the
first year to the third two-month period of the sec-
ond year, the extraction of the ctDNA and the prepa-
ration of the genetic library will be performed by
using OncomineTM Lung ctDNA Assay (Thermofisher,
Massachusetts, USA). Afterwards, from the first two-
month period of the second year to the fourth two-
month period of the second year, the sequencing
by Next Generation Sequencing (NGS) technique on
the lon Torrent GeneStudio S5Plus system (Ther-
mofisher, Massachusetts, USA) will be run. Regard-
ing data analysis, NGS technology involves various
processes, which are very expensive from the point
of view of the computational resources used. Gene
sequencing of cfDNA samples using the NGS tech-
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nique will be analysed on ThermoFisher systems
and software.

The analysis of the characteristic driver mutations of
lung cancer, as included in the OncomineTM Lung
ctDNA Assay, provides sequencing of 11 genes (ALK,
BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA,
ROST1, and TP53) and more than 150 hotspots. The
analysis has a high specificity and sensitivity, along
with an efficient workflow that enables the rapid gen-
eration of results. In addition to being inclusive of
clinical-laboratory information, patient data will also
contain information obtained from genetic analysis
and will always be archived within the same cloud
platform created ad hoc by the Department of Bio-
medical Engineering of Federico Il.

Subsequently, from the third two-month period of
the first year to the sixth two-month period of the
second year, the two Research Units will undertake
to correlate the data obtained from radiomic anal-
ysis with the data obtained from genetic analysis.
Finally, from the sixth two-month period of the first
year to the sixth two-month period of the second
year, the Engineering department of the second
Unit will carry out the Radiomic analysis of the seg-
mented volume using Imaging with the aim of obtain-
ing a number of significant features that can be cor-
related with the genetic data of the liquid biopsy.

Techniques for the Analysis of Liquid Biopsy

A liquid biopsy will be performed only for patients
who have previously undergone a CT study for diag-
nosis and staging. All patients enrolled in the study
will undergo a peripheral venous blood sample col-
lection in two test K2 tubes.

The ctDNA will be extracted from the plasma for
molecular analysis, which will be performed using
NGS technology, based on lon Torrent technol-
ogy. Unlike other fluorescence-based platforms,
lon Torrent uses an electrochemical approach to
detect nucleotides, eliminating the need for opti-
cal labels and thereby increasing sequencing speed
and accessibility. After genomic library preparation,
DNA molecules are fragmented and ligated to oligo-
nucleotide adapters, allowing immobilization onto
specific beads. Each bead is then placed into an oil
droplet containing emulsion PCR (emPCR) reagents,
ensuring that each bead carries a single amplified
DNA molecule. After amplification, the beads are
loaded into a semiconductor chip, with each well
containing a single bead with multiple copies of the
same DNA fragment. Sequencing occurs through
the sequential introduction of nucleotides. When a
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complementary nucleotide is incorporated by DNA
polymerase, a proton (H+) is released, causing a pH
shift. This change is detected by chip sensors, which
convert the electrochemical signal into digital data.

Routine Sample Processing Strategy

Circulating free nucleic acids are purified from 1
mL of clarified plasma. In particular, cfDNA is iso-
lated by using the Qiamp Circulating Nucleic Acid
Kit (Qiagen) and eluted with 50pL of Nuclease-free
Water, following manufacturer instructions. The
extracted cfDNA is stored at -20°C. The concentra-
tion of cfDNA is evaluated using a Qubit 4 fluorom-
eter (ThermoFisher) with the Qubit 1X dsDNA High
Sensitivity (HS) kit.

Extracted cfDNA samples are tested on Genexus
(Thermo Fisher Scientific) system. The platform
enables entire NGS workflows (from library prepara-
tion to data interpretation) within 24 hours. The OPA
assay includes the most clinically relevant actionable
genes for solid tumour patients. Firstly, samples are
created on a dedicated server and assigned to a new
run. Then, the Genexus platform is loaded with OPA
primers, strip solutions, strip reagents, and supplies
according to manufacturer instructions. A total of
10ng is required by the OPA assay on the Genexus
platform. Accordingly, each sample is dispensed on
a 96-well plate, following manufacturer instructions.
Finally, nucleic acids are sequenced on a GX5™ chip
that allows for the simultaneous processing of n = 4
samplesin a single line with an OPA assay, for a max-
imum of 4 lanes (16 samples) in a row. Data analysis
is performed using proprietary lonTorrent Genexus
software (6.8.2.0). Particularly, detected alterations
are annotated by adopting Oncomine Knowledge-
base Reporter Software (Oncomine Reporter 5.0).
In addition, BAM files are also visually inspected with
the Golden Helix Genome Browser v.2.0.7 (Bozeman,
MT, USA) in hotspot regions in EGFR, KRAS, and BRAF
lung cancer-addicted molecular alterations.

cfMeDIP-seq

cfMeDIP-seq is conducted following previously pub-
lished protocols. In short, cfDNA libraries are gener-
ated using the Kapa Hyper Prep Kit (Roche) accord-
ing to the manufacturer’s guidelines. After perform-
ing end-repair and A-tailing, adaptors from the NEB-
Next Multiplex Oligos for lllumina (NEB) are ligated to
the samples, followed by purification using AMPure
XP beads.

To achieve a final quantity of 100 ng, Lambda DNA—
comprising both methylated and unmethylated

amplicons with varying CpG content—is added to
the libraries. 0.3 ng of methylated and unmethylated
Arabidopsis thaliana DNA is added for quality control
purposes (Diagenode). One small part of the library
is kept aside for input control (IC), and the remaining
part was used for immunoprecipitation (IP).
MeDIP is carried out with the MagMeDIP Kit (Diag-
enode) and Antibody antiSmC* (33D3 clone) as per
the manufacturer’s protocol. The efficiency of the
immunoprecipitation is verified via qPCR by detect-
ing the recovery of the spiked-in Arabidopsis thali-
ana DNA (both methylated and unmethylated), fol-
lowing Diagenode’s instructions. All samples with a
specificity of reaction are sequenced at the resolu-
tion with a mean of 54.7 million reads per sample,
resulting in ~5.1X depth per sample.

Processing of cfMeDIP-seq data

The quality of raw reads is evaluated using FastQC
version 0.11.9 and MultiQC version 1.11. Low-quality
reads and adaptors are removed with Trim Galore
version 0.6.6. The trimmed reads are aligned to hg38
with Bowtie2 version 2.3.4.3. SAMTools version 1.9
is used to convert the SAM alignment files to BAM
files, sort and index reads, and remove duplicates.
Samples with <10M mapped reads are excluded.
Tumour fraction is estimated using IchorCNA on
the low-pass WGS of IC samples.

Processing of cfMeDIP-seq data

The quality of raw reads is evaluated using FastQC
version 0.11.9 (https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc) and MultiQC version
1.11 (29). Then, low-quality reads and adaptors are
removed with Trim Galore version 0.6.6 (https://
www.bioinformatics.babraham.ac.uk/projects/trim_
galore). The trimmed reads are aligned to hg38 with
Bowtie2 version 2.3.4.3 (30). SAMTools version 1.9 (31)
is used to convert the SAM alignment files to BAM
files, sort and index reads, and remove duplicates.
Samples with <10 M mapped reads are excluded.
Tumour fraction is estimated using IchorCNA (20)
on the low-pass WGS of IC samples.

Identification and annotation of differentially
methylated regions (DMRs)

The filtered BAM files are processed using MEDIPS
(32) to identify the Differentially Methylated Regions
(DMRs) between LC patients with different hystotypes
and stages. The enrichment scores relH and GoGe
are estimated for each sample to express the grade
of CpG enrichment in the DNA fragments compared
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to the reference genome. The enrichment score relH
is the ratio between the relative frequency of CpGs
within the regions and the reference genome. The
enrichment score GoGe is the observed/expected
ratio of CpGs within the regions and the reference
genome. Samples with a relH value less than 2.7 and/
or a GoGe value less than 1.75 are excluded. Then,
the genome of each sample is binned into 300-bp
windows, and the methylation status of each bin is
compared between the two groups. Regions with
an absolute value of log2 fold change (FC) greater
than or equal to 2 and a p-value less than 0.01 are
selected as differentially methylated. The identified
DMRs are annotated with the annotatr (33) R pack-
age. Gene set enrichment with DAVID and gene
ontologies with a p-value less than 0.05 is selected.

Base Calling

In base calling, nucleotide sequences are “extracted”
from the image data generated by sequencing plat-
forms. Base-calling algorithms convertimage infor-
mation into sequence data. The process also cor-
rects for artefacts such as crosstalk and phase errors.
Crosstalk occurs due to overlapping fluorescence
emissions of different nucleotides, while phasing is
caused by signal dispersion and diffusion between
cycles. Each base is assigned a quality score, called
the “Phred quality score” (Q), which indicates the
accuracy of base identification.

Alignment

Short DNA reads (200-8000 bp) are sequenced from
either one or both ends of DNA fragments (single-end
or paired-end reads), with typical lengths around 400
bp on platforms like 454. Alignment aims to locate
these reads on a reference sequence, but challenges
arise in regions that diverge significantly from the
reference. Using longer or paired-end reads, which
sequence DNA in both 5'-3"and 3'-5’ directions, can
improve alignment accuracy. A critical factor for suc-
cessful assembly is coverage, defined as the num-
ber of times a sequence aligns with the reference,
ensuring reliability and completeness in the recon-
structed sequence.

Calibration of Quality Scores

Phred quality scores derived from alignment algo-
rithms do not always accurately reflect real errors in
base calling. Therefore, recalibration is performed,
considering factors such as raw quality scores, the
relative position of the base within the read, and
the dinucleotide context.
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Clinical Applications

The clinical applications of liquid biopsy depend on
the approach used to study circulating tumour cells
or ctDNA. A quantitative approach provides prog-
nostic information, while a qualitative approach
enables the analysis of predictive mutations, mon-
itoring of clonal evolution, and adjustment of ther-
apeutic strategies. ctDNA, released by apoptotic or
necrotic tumour cells, provides DNA information
from both primary lesions and metastases.

Imaging Techniques

CT will be performed using multidetector equipment
(GE Revolution GSI 128 MDTC).

Clinical and radiological data will be collected to cor-
relate with molecular and genomic data.

Radiologists’ Responsibilities

Radiologists will be required to:

- Collect clinical information using a structured
report (see sheet).

- Obtain informed consent from patients.

Extraction of Quantitative Features for
Radiomics

Textural Features

Plot features will be obtained from manually seg-
mented ROIs on CT images. They will include first-or-
der features (mean, mode, median, standard devia-
tion (std), median absolute deviation (MAD), range,
kurtosis, skewness, and interquartile range (IQR)
and second-order characteristics. For the latter,
bandpass, wavelet, isotropic resampling, discre-
tisation length corrections and different quanti-
sation tools will be implemented. The first three
sets are based on the grey-level co-occurrence
matrix (GLCM), the grey-level run-length matrix
(RLM), and the size zone matrix (SZM), all of which
belong to the family of statistical matrices. Once
these matrices have been constructed, it is possi-
ble to derive texture features (such as Haralick fea-
tures and moments).

To improve robustness, advanced techniques like
bandpass filtering, wavelet transformations, isotro-
pic resampling, and quantisation corrections will
be applied. Multi-grey-level SZM variants will also
be utilised to compute texture features across var-
ious quantisation levels, combining the results using
weighted averages to enhance sensitivity to subtle
texture variations.
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The formula for calculating the multi-gray-level SZM
is as follows:

MSZMy(s,g) = stksz Mf(s.g)

The integration of these features enables detailed
and multi-scale texture characterisation, optimising
the ability to differentiate and classify lung lesions
in CT imaging, even across diverse morphological
and pathological presentations.

Morphological Features

A set of morphological features will be considered,
including mean radial length, radial length entropy,
irregularity, diameter, circularity, compactness,
smoothness, roughness, rectangularity, convexity,
eccentricity, and eulogy.

Classification Methods

Classification involves assigning an individual (such
as a lesion or patient) to a specific class based on
extracted features. This is done using a feature vec-
tor x = [x(1),x(2), ... x(N)], where the classifier assigns
the individual to one of K possible classes.
The process includes several steps:
- Choosing the Classification Criterion:
This decision (linear or nonlinear) depends on the
problem and the available data.
- Training:
The classifier is trained on a data subset, typi-
cally using supervised learning with cross-vali-
dation techniques.
- Validation:
The classifier's performance is tested on a sepa-
rate dataset to evaluate its generalisation ability.

The performance of a classifier depends on the com-
bination of features, algorithms, and training meth-
ods used. Inrecent years, deep learning techniques
have gained popularity for their ability to identify
critical features from large datasets automatically.
eeThe following sections examine some of the most
popular classification techniques and methods. In
this study, all currently available techniques will be
applied with the aim of finding the best combina-
tion in terms of classification performance.

Classifier Types

Classification techniques can be essentially divided
into linear and nonlinear. Linear techniques adopt a
linear combination (sum) of features to try to classify
the individual. Such techniques (e.g., Linear Discrim-
inant Analysis, LDA) are helpful when features are

chosen such that the problem is linearly separable.
More often, the problem is not linearly separable,
and therefore nonlinear techniques (such as neural
networks, k-nearest-neighbours, and support vector
machines) are more useful. Trees are a special type
of nonlinear classifier that is based on successive
dichotomous processes. At each step, the algorithm
creates a binary separation, and each leaf is further
divided into two at the next step. This type of algo-
rithm is generally chosen for its ‘human’ comprehen-
sibility. Dichotomies are binary decisions of the yes/
no type on individual features, and thus their inter-
pretation is transparent. In contrast, classification
rules generated by linear or nonlinear algorithms
are generally not understandable.

Cross-Validation

Cross-validation is an essential aspect of classifier
training and aims to reduce possible overfitting, i.e.,
the tendency of training to select parameters that
make the classifier very good at classifying individ-
uals used as a training set, while the ability to gen-
eralise, i.e., classify individuals not belonging to the
training set, is limited. This issue is related to the
fact that, often, as in the present case, it is not pos-
sible to examine a significant sub-population that is
representative of the entire population (all possible
breast cancers, in this case). Therefore, it is neces-
sary for the classifier to be able to have reasonable
performance on the entire population.

Evaluation Metrics

Performance metrics for classifiers will include stan-
dard measures like True Positives, False Positives,
ROC curves, and confusion matrices. For binary clas-
sifiers, the confusion matrix provides insight into
misclassifications; for multi-class classifiers, more
complex metrics are used.

Implementation in the Present Protocol

All pre-processing, DICOM image handling, and fea-
ture extraction will be conducted using Matlab (The
MathWorks Inc., Natick, MA) or R (R Core Team,
2018). Matlab is widely used for scientific data pro-
cessing and classification. At the same time, Ris an
open-source statistical analysis tool that has grown
to support advanced techniques in machine learn-
ing and radiomics.

Statistical Analysis

The characteristics of the study population and other
relevant variables will be described using the appro-
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priate descriptive statistics for both continuous and
categorical data.

Data will be presented with absolute frequencies
and percentages, reporting the respective confi-
dence limits. The mean and standard deviation will
be reported for discrete parameters, following a
Gaussian curve. Medians and interquartile ranges
will be reported in cases where parameters are not
distributed according to a Gaussian curve. Paramet-
ric and nonparametric tests for paired and unpaired
data will be used, regardless of whether the data
distribution is Gaussian or non-Gaussian, to detect
statistically significant differences between groups.
For continuous variables, the difference between
median values for different groups will be calcu-
lated and tested using a two-sided Student t-test
(if the differences are normally distributed) or the
Mann-Whitney test (if the differences are gener-
ally not distributed. Assessment of inter-observer
variability will be performed by calculating Cohen'’s
Kappa index. Mixed-effects regression models will
adjust for covariates in longitudinal data. Multivari-
ate analysis, including linear classifiers, support vec-
tor machines, and decision trees, will explore fea-
ture combinations to optimise classification accu-
racy of lung lesions.

A p-value <0.05 will indicate statistical significance,
with Bonferroni correction for multiple comparisons.
Analyses will use Matlab Statistics Toolbox and R.

DISCUSSION

Precision medicine enables the targeted treatment
of LC, including stage lll, by applying multimodal
omic strategies tailored to individual groups based
on their genetics (34, 36).

Radiogenomics aims to correlate imaging pheno-
types with gene and epigenetic modifications. Radio-
mics has recently emerged as a promising tool
for discovering new imaging biomarkers. It can be
applied to any field of diagnostic imaging and is
used in various clinical settings. Radiogenomics is
a specialised evolution of oncology radiomics that
utilises imaging capabilities to non-invasively iden-
tify or predict tumour-specific genomic alterations
(37-38).

The biopsy of the suspected cancer is today the gold
standard for the characterisation of LC. However, it
is expensive, invasive and evaluates only the sam-
pled section of a heterogeneous tumour. The appli-
cative and ambitious goal of the present study is
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to develop a new protocol and mathematical algo-
rithm based on the imaging of the entire tumour or
of a multifocal tumor load in a single patient, with
the possibility of providing a non-invasive diagnosis
correlating also the data derived from liquid biopsy
on the gene mutations and epigenetic changes of
the tumour.

Currently, there is no universal image acquisition
protocol and no structured reporting standards (39)
The method and application of the structured report
could be adopted as a reporting method not only in
LC but more generally in all cancers. The algorithm
derived from the present study should be validated
by scientific agencies and societies to transfer the
obtained diagnostic procedures into the clinical set-
ting and real-world practice.

Suppose the goals of the present project are suc-
cessful. In that case, they will result in a significant
reduction of health system expenses, allowing for
highly personalised LC treatment and enabling ear-
ly-stage diagnosis, thereby avoiding unnecessary
treatments.

All this would bring enormous benefits to patients
in terms of quality of life and social and productive
contribution.
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ABSTRACT: the presence of metastatic cells in the first draining lymph node is crucial for staging melanoma, traditionally treated
by the removal of the regional nodal basin until few years ago. The results of some prospective studies of surgical strategy and
the introduction of immunotherapy and targeted therapy has significantly changed clinical practice, reshaping the role of lymph
node dissection. Single Lymph Node Biopsy (SLNB) is now used for accurate staging with less invasive surgery, aiding in identifying
patients who may benefit from adjuvant therapy. The aim of this review is to enlighten the needs perceived during everyday clinical
practice. Prognostication in melanoma is still a challenge, with serum lactate dehydrogenase (LDH) as the only biomarker. Elevated
LDH levels correlate with worse outcomes in advanced melanoma.SLNB time and curative role are debated, with studies suggesting
that the timing of SLNB may influence outcomes and that SLNB has limitations in predicting mortality, especially in different age
groups. The use of precision medicine tools like circulating tumour DNA (ctDNA) tests and the emerging role of neoadjuvantimmune
checkpoint inhibitors (ICl) are improving outcomes.

While SLNB still remains fundamental, further research is needed to identify which patients’ subgroups benefit the most from it.
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IMPACT STATEMENT: This article challenges conventional
melanoma staging by reintroducing single lymph node excision
as a selective tool in modern practice. It proposes refined clini-
cal criteria for its use, aiming to guide oncologists toward more
personalized and pragmatic staging decisions in the era of pre-
cision oncology.

INTRODUCTION

The presence of metastatic dissemination in the first
draining lymph node of a melanoma is an essen-
tial element for correct staging according to inter-
national guidelines (1). For decades, the most com-
mon initial route for metastatic spread has been
recognized as the lymphatic drainage of the pri-
mary lesion. Over the last few decades, studies on
surgical strategy and the revolutionary therapeutic
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introductions of immunotherapy and targeted ther-
apy have reshaped the role of lymph node dissec-
tion and transformed survival rates in both adju-
vant and metastatic settings (1).

Results from the Multicenter Selective Lymphadenec-
tomy Trial Il (2) have clearly demonstrated that there
is no survival advantage from complete lymph node
dissection when compared to ultrasound surveillance
of the locoregional district. The concept of the Sin-
gle Lymph Node Biopsy (SLNB) was developed for
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melanoma by D.L. Morton in the late 1980s, based
on earlier lymphoscintigraphy studies.

The benefits of this procedure include more accu-
rate staging of the regional node, combined with less
invasive and morbid surgery. According to current
guidelines, SLNB can help identify patients with at
least pT1b melanoma who may benefit from adju-
vant therapy. In histopathological procedures, SLNB
positivity rates vary, with a reported false-negative
rate as high as 10% (3).

Following the excellent results from the Checkmate
238, Keynote-054, and COMBI-AD trials in 2018, adju-
vant treatment has become standard clinical prac-
tice for patients with stage Ill melanoma (4, 5). Fur-
thermore, Pembrolizumab has demonstrated signif-
icant improvements in both Relapse-Free Survival
(RFS) and Distant Metastasis-Free Survival (DMFS) in
pivotal adjuvant trials for stage 1IB/C disease, mak-
ing these stages eligible for adjuvant therapy (6).
New therapeutic options are emerging following
the excellent results from the phase 3 NADINA trial
(7) and the randomized phase 2 SWOG S1801 trial.
These trials are clearing a path for the implemen-
tation of neoadjuvant (Nivolumab + Ipilimumab) or
perioperative (Pembrolizumab) regimens for stage Il
melanoma patients with clinical evidence of lymph
node dissemination or satellitosis.

This review aims to highlight the needs perceived
in everyday clinical practice.

CLINICAL PATHOLOGICAL
FEATURES, BIOMARKERS, AND
GENE EXPRESSION PROFILING

Do we have reliable biomarkers for melanoma prog-
nostication? Currently, lactate dehydrogenase (LDH)
is the only biomarker consistently associated with
prognosis in melanoma (8). Several studies have
suggested that a baseline elevation of serum LDH
(sLDH) is associated with poorer treatment outcomes
in patients with stage IV metastatic melanoma (24).
In a study by Fischer et al. (9), molecular and immu-
nological characteristics were not significantly asso-
ciated with sLDH status. It is possible that sLDH is
associated with worse outcomes primarily as a sur-
rogate for tumour burden, as a strong correlation
was found with the number of metastatic sites (9).
However, some multivariate analyses have provided
evidence that sLDH is associated with poorer out-
comes independent of tumour burden (9).
Dutriaux et al. (10) found a similar correlation
between higher levels of sSLDH and decreased Pro-
gression-Free Survival (PFS) and Overall Survival (OS)
in patients with advanced BRAFV600-mutant mela-
noma and brain metastases who were treated with
targeted therapy. Additionally, sSLDH levels may dif-
fer among patients with stage IV metastatic mela-
noma due to variations in the extent of organ dam-
age and the influence of comorbidities (8, 9).
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Figure 1. Melanoma staging and treatment according to anatomopathological T stage features.

The absence of clinical metastasis determines a pivotal juncture in the therapeutic management of the patients, to date pTla patients are
candidate to periodic follow-up, on the other hand pT1b-pT3a and pT3b-pT4b patients are multidisciplinary discussed to receive sentinel
lymph node biopsy to define a clinical IIA, resulting in clinical follow-up, or I1B-1ID stage, leading to adjuvant therapy. In the recent future,
it is hypothesized a different management for pT3b-pT4b patients based on the CPGEP, GEP and IHC risk scores (dashed square), which
could allow to avoid SNLB and to an upfront adjuvant therapy. Immunohistochemistry (IHC), clinicopathological and gene expression profile
(CPGEP) gene expression profile (GEP), sentinel lymph node biopsy (SNLB).
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Some studies have also revealed that an Interfer-
on-gamma (IFN-y) signature can be useful in dis-
tinguishing patients at high risk of recurrence from
those at low risk (11). Immunotherapies engage the
immune system to target and eliminate cancer cells
and can stabilize malignancies until immune escape
mechanisms lead to progression. A long-term fol-
low-up of the KEYNOTE-001 trial revealed that 12% of
the 105 melanoma patients who were initially classi-
fied as having a complete response after anti-PD-1
treatment eventually had detectable disease in their
serum, suggesting their tumours were held in a state
of clinically undetectable equilibrium (11).

IFN-y signalling is critical for the early response to
checkpoint blockade, and inactivating IFN-y sens-
ing in tumour cells promotes resistance to immu-
notherapy (11). It is hypothesized that IFN-y inhibits
tumour growth and promotes CD8+ T cell-directed
responses through improved antigen presenta-
tion. However, the long-term role of IFN-y remains
unknown because biopsies cannot be obtained
when patients have clinically undetectable disease
(11). Moreover, IFN-y has negative feedback mech-
anisms that can, in some cases, promote tumour
growth (11).

In a preclinical study, the viral expression of IL-12,
a cytokine able to stimulate IFN-y production and
enhance the growth and cytotoxicity of natural killer
(NK), CD8, and CD4 T cells, was found to “freeze” mel-
anoma-bearing mice, with mice lasting over 120 days,
neither clearing nor succumbing to their tumours
(11). Consistent with the importance of IFN-y in that
model of equilibrium, transcriptomic data from The
Cancer Genome Atlas (TCGA) were analysed, and a
positive association was found between IL-12, IFN-y
-stimulated gene expression, and increased survival
in melanoma patients. It was observed that, indeed,
melanoma patients with higher expression of IFN-y
response genes fared better than patients with
lower expression (11). In a study from Versluis et al.
the role of IFN-y signature was compared between
an observation cohort and an adjuvant intention
cohort. In both arms, better RFS were achieved in
patients with high IFN-y score (12). Another study
from Long et al. (13) evaluated molecular and bio-
chemical characteristics of patients who underwent
adjuvant treatment with Nivolumab vs placebo in
[IB/1IC stage melanoma, finding that better RFS was
linked to higher IFN-y signature, tumour mutational
burden (TMB), and percentage of CD8+ T cells, and
lower C reactive protein (CRP) levels. Despite what
had been found in other cited studies, in this work,

molecular biomarkers were not associated with RFS
in patients who underwent a placebo treatment. In
a study in which a biomarker-based signature was
retrospectively analysed in patient treated with dab-
rafenib plus trametinib versus placebo in the COM-
BI-AD trial (14), a correlation between higher IFN-y
gene expression signature and prolonged RFS was
found in both groups. Patients with low TMB had
a substantial long-term RFS benefit from targeted
therapy. Conversely, patients with high TMB seem
to have a less pronounced benefit, especially if they
had an IFN-y signature lower than the median (14).

SURGICAL TIMING OF SLNB AND
ITS CURATIVE ROLE

Given that there are no consensus guidelines on the
optimal timing for performing SLNB in high-risk mel-
anoma patients (Figure 1), a study involving 53,355
patients who underwent the procedure found that
surgery was performed a median of 5-7 weeks after
diagnosis (15). The study also revealed that for each
week of delay, the probability of finding a positive
node increased by 2.4%. Furthermore, patients with
a higher Breslow depth index showed a significant
increase in nodal positivity with increased time to
surgery, although no significant trend was observed
in T4 patients (15).

A study by Dixon et al. sought to evaluate the effi-
cacy of SLNB in predicting mortality in melanoma
patients at different ages, using data from the Tub-
ingen University Database for patients who under-
went SLNB between January 2000 and December
2014. The results showed that predicted SLNB-pos-
itive rates were significantly higher than mortality
rates for 20-year-old patients, while the opposite was
true for 80-year-old patients. This study highlights
the limitations of SLNB in predicting mortality, sug-
gesting it may lead to the overtreatment of younger
patients and undertreatment of older patients (15).
In a multicentre international study by Moncrieff
et al. (16), patients with pT1b-pT2a melanoma were
analysed. This group has a reportedly low risk of a
positive SLNB (10%), and even when a positive node
is found, the 5-year survival rate for stage IlIA mel-
anoma is 90% (16). The study, which included 3,610
patients with early primary cutaneous melanomas,
found that only 11.4% had a positive SLNB, and the
only clinical and histopathological characteristic
associated with SLNB positivity was a mitotic rate
greater than 1/mma2. The authors concluded by sug-
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gesting a re-evaluation of the indication for SLNB in
early T-stage melanoma (16).

Another study from Kakish et al. tried to investigate
the association of SLNB and survival in the elderly.
What emerged from this retrospective study is that
SLNB still adds prognostic information for elderly
patients with melanoma and should not be elimi-
nated in this population unless justified by poor per-
formance status or patient preference. In the ana-
lysed cohort the decreasing in SLNB performance
could correlate with a lack in the therapeutic offer
for elderly melanoma patients (17). By quantify-
ing the prognostic role of SLNB (18), Varey and col-
leagues found that the risk of regional node field
relapse with SLNB plus adjuvant 10 for T3b and T4
is around 9 vs 27% in all cases in which patients did

not undergo surgery. Similarly, the node field recur-
rence rate with SLNB alone is around 14% compared
to around 40% in patients in which both IO and sur-
gery were not performed. Thus, in this setting of
patients, SLNB should always be performed, improv-
ing the locoregional control of disease.

In Keynote 716 there was the possibility to undergo
adjuvant therapy in stage IIB-1IC patients. This meant
that even without nodal involvement, patients with
melanomas characterized by a bad pathological T
stage had the chance to lower the possibilities of
recurrence (19).

This can lead to arguing the role of SLNB if all patients
with a T stage between pT3b and pT4b, independently
if with or without lymph nodal dissemination, will
be recommended to undergo adjuvant treatment.
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Figure 2. Timeline of Events in clinical practice and in our proposed schedule.

In high risk II-1ll stage MM patients, assessed via multidisciplinary discussion according to CP-GEP characteristics of primary excised lesion,
we propose a different schedule of events compared to the Standard of Care. These patients should cut all the time and costs linked to
radicalization, SLNB and radiological restaging, harbouring to an upfront adjuvant treatment.
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Moreover, there is the necessity of underlining the
role of lymphatic drainage pattern that can vary
between patients, leading us to a possible false neg-
ative SLNB, as enlightened in a study from Cirocchi
et al. (20), in which there was an important hetero-
geneity in the localization of the SLNB, in particular
in the regions of posterior torso.

REAL-WORLD CLINICAL
CHALLENGES

Therefore, the central question remains: to biopsy
or not to biopsy? As the studies cited above demon-
strate, the exact characteristics of the population
that requires this locoregional treatment are not
yet fully known. In the future, we will not blindly
select all patients based on the characteristics men-
tioned in the guidelines. Instead, the focus should
be on the characteristics appropriate for the indi-
vidual patient, which will provide clearer informa-
tion about the likelihood of locoregional or distant
metastasis during active oncologic surveillance over
5 to 10 years.

The emerging role of precision medicine has led to
studies investigating the use of personalized tests
such as Signatera (21). This involves whole-exome
sequencing of both tissue and peripheral blood to
target patient-specific single nucleotide variants
(SNVs), which can then be used to track circulating
tumour DNA (ctDNA) in plasma (21). This tool shows
promise in identifying high-risk primary melanoma
patients under surveillance after resection to detect
disease recurrence (21). Of course, other important
data, such as the patient's working conditions, med-
ical history, and clinicopathologic features like the
Breslow index, must not be overlooked. All of these
features are incorporated into predictive algorithms,
such as the CP-GEP test Merlin or the GEP test Mela-
Genix, which will soon help us better identify the
high-risk population for recurrence that should be
selected for surgical intervention (21).

Another issue to consider is the integration of neoad-
juvant or perioperative immune checkpoint inhibitors
ICl treatments, as seen in the NADINA trial (7). Neoad-
juvant ICIs have been shown to provide superior out-
comes compared to approved adjuvant treatments,
with a 2-year RFS of around 70-80% after two cycles
of neoadjuvant Ipilimumab plus Nivolumab followed
by surgery. In these trials, only patients who were
non-responders or had a partial response received
adjuvant treatment (7). When upfront systemic ther-

apy leads to resectability, trials for advanced unre-
sectable melanoma demonstrate better survival
compared to ultimate systemic treatment (1). There-
fore, ICIs for preoperative melanoma treatment have
the potential to enhance patient outcomes and are
likely to reshape the principles of treatment for both
advanced and localized melanoma.

CONCLUSIONS

Currently, SLNB remains a crucial procedure for
identifying individuals who can benefit from adju-
vant therapy by providing precise staging with less
invasive surgery. In this work, we have shed light on
the clinical needs encountered in everyday practice.
With LDH as the only established biomarker, mel-
anoma prognosis remains difficult to assess. The
curative role of SLNB must be re-evaluated. Even
with potentially perfect timing, the inconsistency in
predicting the usefulness of single lymph node exci-
sion is becoming evident, and it can also be seen as
a hurdle between the patient and the start of adju-
vant therapy. The application of precision medicine
technologies, such as ctDNA assays, CP-GEP assess-
ment, and the emerging role of neoadjuvant ICls) is
poised to redefine clinical node management.
What emerges from this work is the urgent need
to find a new role for node sampling. Patients who
would undergo adjuvant treatment with or without
SLNB should be assessed with the aforementioned
precision medicine tools in multidisciplinary discus-
sions at high-volume centres, ensuring the best clin-
ical practice for every single patient. In this way (Fig-
ure 2), we could reduce costs and time for national
healthcare systems, avoiding surgical overtreatment
for patients who would be treated regardless, and
in other cases, avoiding unnecessary medications
for patients with a low risk of recurrence for whom
SLNB alone might be sufficient.
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