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INTRODUCTION
Cancer treatment followed under a “one-size-fits-
all” model for many decades because it relied on 
standardized protocols that used tumor histology, 
anatomical site, and clinical staging as guidance (1). 
These techniques show effectiveness for treating ini-

tial-stage cancer, yet fails to handle molecular com-
plexity, heterogeneous nature and its dynamic evo-
lutionary changes (2).
The field of tumour-genome profiling has expe-
rienced significant advancement during the last 
twenty years. The first wave started with commer-
cial next-generation sequencing (NGS) in 2005 (3). 
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ABSTRACT: the future of cancer care will be based on precision oncology, which uses individual tumor molecular profiles to provide 
the correct drug to the appropriate patient at the appropriate time. This approach might deliver precise results with minimal side 
effects and enhanced treatment success rates. However, the vision fails to materialize in reality because current tools remain 
centralized and needs advanced infrastructure together with specialized/trained staff and prolonged procedural time. The lack 
of laboratory capabilities in healthcare settings can be addressed through Point-of-Care (POC) testing which enables diagnostic 
methods to be performed near or at the site of patient care thus linking laboratory capabilities to practical healthcare delivery. The 
technology is capable of delivering specific diagnostic tests at bed-side, and in particular in remote areas. The implementation of POC 
testing enables precision oncology to become practical allowing for prompt medical decisions. POC systems allow for continuous 
tracking of relapse, resistance and response. POC testing serves as an essential component of precision oncology because it enables 
personalized care more quickly and directly to patients. This review synthesizes current and emerging POC platforms for oncology, 
evaluates their analytical performance, clinical readiness, and regulatory landscape, and identifies unmet needs that must be 
addressed to enable routine adoption for diagnosis and monitoring.
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The implementation of hybrid-capture panels in 
2013 enabled clinical-grade whole-exome/large-tar-
get sequencing to become a standard practice in 
oncology (4). Single-cell RNA/DNA sequencing fol-
lowed in 2015, revealing intratumoral heterogene-
ity at cellular resolution (5). The landscape evolved 
further with the introduction of Long-read high-fi-
delity (HiFi) sequencing technology in 2019 that 
enables the detection of intricate structural varia-
tions which short reads fail to identify. Ultra-deep 
error-suppressed assays which started in 2021 pro-
vide part-per-million sensitivity for plasma-based 
minimal residual disease monitoring (6, 7). The con-
ventional cancer classification system’s limitations 
led to a new approach of molecular profiling which 
triggered successive genomic innovations that shifted 
oncology from histology-based treatment to biolo-
gy-driven precision care.
Rapid advancements in genomic research have 
accelerated the adoption of precision oncology as 
a standard treatment approach for cancer patients. 
Precision oncology uses multiple biomarkers to 
determine the appropriate therapy intensity based 
on tumor biology: (i) The use of genomic mark-
ers like activating Epidermal Growth Factor Recep-
tor (EGFR) mutations in non-small-cell lung cancer 
(NSCLC) leads patients to receive tyrosine-kinase 
inhibitors (TKI) instead of standard chemotherapy 
treatment (8); (ii) the presence of Human Epidermal 
Growth Factor Receptor 2 (HER2) overexpression 
as a proteomic marker enables doctors to identify 
breast cancer patients who need trastuzumab treat-
ment while preventing its use in patients without 
HER2-positive tumors (9); (iii) the presence of MGMT 
promoter methylation in glioblastoma serves as an 
epigenetic marker to predict improved temozolo-
mide response thus requiring more intense treat-
ment (10) and (iv) multi-analyte expression panels 
such as the 21-gene Oncotype DX test stratify ear-
ly-stage, hormone-receptor–positive breast cancer 
so that low-risk patients safely omit adjuvant che-
motherapy, reducing overtreatment without com-
promising outcomes (11, 12). Such advancements 
demonstrate how precision tools both direct treat-
ment escalation and provide safe de-escalation 
treatment which establish a foundation for indi-
vidualized care.
Precision medicine has transformed oncology by 
moving away from standard treatments to person-
alized care which has reshaped both the objectives 
and organization of the field and improved treat-
ment effectiveness through better response rates, 

reduced unnecessary treatment, and individualized 
choices (13). Yet the real-world implementation of 
precision oncology practices exists in a state of sig-
nificant inequality and operational inefficiency. Cen-
tralized diagnostic workflows that need advanced 
laboratory infrastructure and expensive sequenc-
ing platforms and highly specialized personnel cre-
ate delays of up to three weeks between biopsy and 
therapeutic decision-making (14-16). The time spent 
waiting for test results is crucial for patients with 
fast-moving cancers because tumor biology changes, 
patient health worsens, and treatment opportuni-
ties decrease with each passing hour. Cancer diag-
nostic facilities exist mainly in urban high-income 
countries which prevents their use by rural popula-
tions and low and middle-income countries where 
cancer cases are increasing quickly (17, 18). Even in 
well-resourced settings, the process of sample col-
lection, transport, sequencing and analysis creates 
delays that result in therapeutic decision delays of 
days to weeks especially for aggressive or late-stage 
cancers (19).
Researchers have previously addressed the transla-
tional gap through laboratory-based molecular inno-
vations. Liquid biopsy stands out as a minimally inva-
sive and repeatable tissue biopsy alternative which 
allows researchers to study circulating tumor DNA 
(ctDNA), RNA, extracellular vesicles (EVs) and circu-
lating tumor cells (CTCs) from biofluids, including 
blood, urine and (20–22). EVs are broadly classified 
by size and origin into exosomes (30–150 nm, endo-
somal origin), microvesicles (100–1000 nm, plasma 
membrane budding), and apoptotic vesicles (50–5000 
nm, released during cell death) (23). However, liq-
uid biopsy offers real-time insights and operational 
flexibility, the analytical accuracy depends on bio-
logical and pre-analytical variability which can hide 
true tumor signals.
Recent evidence shows that the absolute amount 
of circulating biomarkers can fluctuate substantially 
within the same individual, even when tumour bur-
den is biologically constant, because of short-term 
physiological factors. Acute shifts in plasma volume 
caused by dehydration or strenuous exercise pro-
duce multi-fold transient rise in total cell-free DNA 
(cfDNA) concentration that ctDNA assays report 
(24). Independent time-series studies have also 
revealed diurnal oscillations: CTC counts in mouse 
and human models peak at the onset of the rest/
night phase, suggesting endocrine regulation of 
tumour-cell egress (25). Finally, pre-analytical vari-
ables-plasma vs serum matrix, occult haemolysis, 
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and delays in tube processing - can shift total cfDNA 
or EVs yield by an order of magnitude, with direct 
consequences for mutation calling and quantitative 
trending (24). Collectively, these hydration, circa-
dian and matrix-driven effects underscore the need 
for active normalisation strategies whenever liquid 
biopsy is decentralised to the point of care (POC).
The clinical adoption of liquid biopsy faces chal-
lenges because it depends on complex centralized 
laboratory infrastructure and sophisticated assay 
platforms (26). Liquid biopsy technologies need 
adaptation to achieve their maximum potential for 
POC implementation. The POC testing model trans-
forms healthcare by providing decentralized rapid 
and clinically actionable diagnostics directly at or 
near patient care locations (27, 28). The POC sys-
tems provide quick biomarker results which enable 
fast diagnostic-treatment intervals and immediate 
therapeutic alignment (29). The time advantage is 
essential in oncology because urgent medical inter-
ventions have major effects on patient outcomes. 
The promise of precision oncology requires tech-
nological innovation to develop compact diagnos-
tic tools that are both sensitive and clinically adapt-
able for POC settings.

The detection of cancer biomarkers has undergone 
a transformation through new smart tools that 
combine compact design with ultra-sensitivity and 
decentralized adaptability. Electrochemical biosen-
sors now enable the real-time detection of ctDNA 
at femtomolar concentrations using small sample 
volumes (30). By integrating nanostructured elec-
trodes with surface-functionalized aptamers or DNA 
probes, these platforms can achieve analytical per-
formance similar to that of centralized laboratories 
through rapid POC testing (31, 32). The integration 
of multiple functions, including isolation, enrich-
ment, and downstream biomarker analysis, onto 
a single microfluidic platform enables microfluidic 
lab-on-chip systems to perform multiplexed analy-
sis of liquid biopsy. The integrated design of these 
systems decreases the complexity of sample han-
dling and reduces both bioanalyte loss and contam-
ination risks when compared to traditional bench-
top laboratory procedures (33). CRISPR-based diag-
nostics offer programmable nucleic acid detection 
through user-friendly readouts, including colorimet-
ric, luminescent and lateral-flow assays for rapid 
POC testing (34). The clinical adoption of nanopar-
ticle-enhanced sensors depends on solving manu-

Figure 1. From bottlenecks to bedside, smart tools accelerate precision oncology.
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facturing scalability issues, cost reduction, regula-
tory approval, and workflow integration challenges 
(35). These innovations create a vital pathway for 
implementing precision oncology outside clinical 
laboratory settings. The conceptual framework in 
Figure 1 demonstrates how POC testing functions 
as a vital component of real-time patient-centered 
precision oncology.
The evidence from this review demonstrates that 
POC technologies possess the technical ability to 
detect molecular signatures for precision oncol-
ogy; however, their full potential requires coordi-
nated action. The combination of nanomaterial-en-
hanced electrochemical sensors, CRISPR diagnostics, 
and fully integrated microfluidic “lab-on-a-chip” plat-
forms enables bedside assays to reduce the biop-
sy-to-decision window from weeks to minutes, thus 
enabling therapeutic choices that match the speed 
of tumor detection/management. The implemen-
tation of global POC precision oncology demands 
essential steps, including the development of afford-
able devices that are validated in the field and the 
establishment of adaptive regulations that match 
innovative approaches with context-based valida-
tion. Further implementation of scalable training 

programs and ethical safeguards is required to pro-
tect privacy and ensure equitable access. Collectively, 
these measures will establish bedside genomics as 
a standard medical practice.

PRECISION ONCOLOGY AND THE 
URGENCY OF DECENTRALISED 
TESTING
Modern precision oncology depends on continuous 
measurement of highly dynamic biomarkers like 
single-nucleotide variants, gene fusions, circulat-
ing microRNAs, exosomes, oncoproteins, and even 
intact circulating tumor cells (27, 33). The founda-
tional idea is that treatment is most effective when 
tailored to the unique molecular profile of a patient’s 
cancer (36). However, this vision is difficult to real-
ize due to several limitations of current centralized 
diagnostic systems. These systems are labor-inten-
sive, slow, and often fail to capture the spatial and 
temporal heterogeneity of malignancies (37). Tradi-
tional assays lack the sensitivity, speed, and multi-
plexing capabilities required for early detection, con-
tinuous monitoring, and precise treatment stratifi-

Figure 2. Comparative timelines for centralized laboratory testing versus on-site diagnostics in precision oncology.
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cation-critical needs, especially for fast-progressing 
cancers. As a result, actionable biomarkers often 
cannot be exploited effectively in clinical practice 
due to logistical delays, infrastructure deficits, and 
access inequities inherent in the central-lab (38, 39).
To overcome this translational gap, diagnostic plat-
forms must not only deliver high analytical precision 
but also function with operational flexibility across 
diverse healthcare settings. The transition from cen-
tralized laboratory workflows to rapid near-patient 
testing is illustrated in Figure 2.
To this, POC diagnostics are designed to move molec-
ular testing from centralized laboratories to locations 
where patients receive care i.e. infusion suites, oper-
ating rooms, outpatient clinics, or even the home. In 
oncology this decentralization is uniquely valuable 
because actionable biomarkers (mutations, miR-
NAs, proteins, circulating tumour cells/exosomes) 
can evolve rapidly under therapeutic pressure; short 
“sample-to-answer” times therefore translate directly 
into faster treatment adjustments and, potentially, 
improved outcomes (40).
POC liquid-biopsy technologies are beginning to 
close the “temporal gap” between sample collection 
and clinical decision-making by generating action-
able molecular read-outs fast enough to guide ther-
apy adjustments in real time. A good illustration is 
the integrated exosome isolation and detection sys-
tem (EXID system) microfluidic cartridge that isolates 
tumor-derived exosomes, labels the immune-check-
point protein PD-L1 on-chip, and quantifies the signal 
in <2 h. In a pilot cohort of 16 lung-cancer patients the 
assay distinguished post-treatment from pre-treat-
ment samples and from healthy controls, with a 
limit of detection of 10.76 exosomes µL–¹-demon-
strating its utility for tracking emerging resistance 
to anti-PD-1/PD-L1 therapy at the chair-side rather 
than in a distant reference laboratory (41). Research-
ers have used a herring-bone microfluidic chip to 
monitor 24 patients with metastatic pancreatic duc-
tal adenocarcinoma over multiple chemotherapy 
cycles. The device captured over 80% of samples 
as CTC-positive and produced per-patient “CTC/CSC 
trajectories” that mirrored radiological progression 
or response, providing a quantitative relapse signal 
weeks before routine imaging results were available 
(42). A 2025 study in triple-negative breast cancer 
introduced a disposable, pen-printed paper chip that 
detects exosomal miRNA-21 directly in serum. The 
self-contained strip, coupled with enzyme-free sig-
nal amplification, reaches a 1.2 nM limit of detection 
and delivers results in 30 minutes using a handheld 

potentiostat. This low-cost, home-based monitoring 
of treatment response and recurrence between clinic 
visits is particularly useful in aggressive TNBC (43).
Taken together, these sensor shows how decen-
tralised testing can capture rapidly evolving onco-
logic biomarkers at the POC, enabling much earlier 
detection of relapse than is possible with traditional, 
centrally run assays.

SMART TOOLS: TECHNOLOGICAL 
CONVERGENCE IN PRECISION 
ONCOLOGY
A new generation of “smart” POC devices is emerg-
ing from the synergistic fusion of four previously 
independent innovation streams: (i) microfluidic lab-
on-chip architectures that automate sample-to-an-
swer workflows on disposable cartridges (33); (ii) bio-
sensor transduction schemes-electrochemical that 
now achieve femtomolar-attomolar limits of detec-
tion for circulating proteins, exosomes, and nucleic 
acids (27). Further the integration of nanomateri-
al-enhanced signal amplification with CRISPR-based 
molecular recognition, microfluidic automation and 
miniaturized electronics to create deployable POC 
systems (44–46).
Electrochemical biosensing has become a corner-
stone of molecular precision oncology due to its 
high analytical sensitivity with low-power, chip-scale 
instrumentation that can be mass-manufactured at 
minimal cost. By transducing the binding or cleav-
age of tumor-derived analytes-circulating-tumor 
DNA fragments, exosomal RNA cargoes, or oncop-
roteins-into voltammetric or impedimetric signa-
tures, these platforms provide linear quantitative 
readouts across at least five orders of magnitude, 
with limits of detection routinely (47–49).
Such modular devices are operable in outpatient infu-
sion suites, peri-operative theaters, or resource-con-
strained field clinics, thereby eliminating the geo-
graphic and temporal separation between speci-
men collection and molecular insight. The result is a 
compressed diagnostic–treatment loop that recasts 
precision oncology as a real-time discipline rather 
than a retrospective laboratory exercise, enabling 
clinicians to adjust targeted therapies at the pace 
of tumor evolution.
The integration of nanomaterials boosts sensor per-
formance through faster electron transfer rates, 
increased biomarker capture surface area, and 
enhanced signal-to-noise ratio. The development of 
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highly sensitive electrochemical biosensors has been 
made possible by recent advances in nanostructured 
material fabrication techniques. The effective sur-
face area of the electrodes increases through the use 
of gold nanoparticles (AuNPs), which also enhances 
conductivity and provides a dense platform for sta-
ble biorecognition element immobilization (48, 50). 
Research findings from recent studies confirm that 
electrochemical biosensors show great potential for 
POC oncology testing. Raucci et al. (2024) demon-
strated that acid treated commercial gold electrodes 
and AuNPs modified paper-based screen-printed 
electrodes can detect the lung-cancer biomarker 
miR-2115-3p with a methylene blue based electro-
chemical biosensor. The commercial gold platform 
achieved a slightly lower detection limit (≈1 nM), but 
the paper-based alternative offered comparable ana-
lytical performance at a much lower cost and with 
a more sustainable material profile. Both configu-
rations maintained high selectivity against non-tar-
get miRNAs and functioned directly in human serum 
(Figure 3A) (50).
Nagdeve et al. created a sensor that measures 
microRNA-31 which serves as a recognized oral-can-
cer biomarker, while achieving detection limits of 
70 pg mL–¹ in buffer solutions and 700 pg mL–¹ in 
diluted serum solutions, thus meeting the require-
ments for early cancer screening and diagnosis (53). 
This study demonstrates how electrochemical bio-
sensors can transform precision oncology by detect-
ing clinically relevant biomarkers in small sample 
volumes with high precision. These devices possess 
compact dimensions, affordable prices, and smart-
phone-readable functionality, making them appro-
priate for decentralized healthcare operations in lim-
ited-resource environments. The successful clinical 
implementation of these devices requires address-
ing three main challenges which include biofouling, 
signal drift and calibration stability through sys-
tematic materials development and thorough vali-
dation procedures (54). The integration of electro-
chemical sensors into wearable devices would allow 
for the continuous tracking of circulating tumour 
DNA which could serve as an early warning system 
for cancer relapse in colorectal and other cancer 
types. The analyte detection range of electrochem-
ical devices is mainly limited to predefined targets, 
although they show high sensitivity for detecting pro-
teins and small-molecule biomarkers. A complete 
real-time molecular surveillance system for oncol-
ogy can be developed by combining CRISPR-based 
assays with electrochemical devices because CRIS-

PR-based assays provide sequence-specific ampli-
fication-free nucleic acid detection.
CRISPR-based diagnostics, such as the SHERLOCK 
platform, detect nucleic acid biomarkers through 
Cas enzyme sequence-specific cleavage activity at 
single-molecule resolution for point-of-care oncol-
ogy testing. Gootenberg et al. demonstrated in their 
research that SHERLOCK detects KRAS oncogenic 
mutations at attomolar concentrations through 
Cas13a recognition, which leads to collateral reporter 
cleavage, thus enabling non-invasive mutation detec-
tion in bodily fluids (55). SHERLOCK demonstrated 
88.1% sensitivity and 100% specificity in detecting 
EGFR T790M mutations from NSCLC liquid biopsies, 
which led to osimertinib therapy decisions in clini-
cal practice (Figure 3B) (51). This technology allows 
for the rapid detection of BRAF V600E mutations in 
melanoma plasma samples in a short time, support-
ing the timely selection of targeted treatments (56). 
CRISPR tools serve dual purposes beyond diagnostic 
applications, as they help track drug responses and 
monitor drug resistance. A research study showed 
that CRISPR/Cas13 technology enables the evaluation 
of the biological role of vlincRNAs in drug response, 
thus demonstrating CRISPR’s capability for moni-
toring treatment effectiveness (57). CRISPR-based 
screening platforms identify essential protein-drug 
interactions, leading to the discovery of novel ther-
apeutic targets. CRISPR-based systems work along-
side traditional biosensors to detect ctDNA and RNA 
sequences with high sensitivity, which expands the 
capabilities of POC testing in oncology. The proposed 
cloud-based CRISPR analytics system would simplify 
the process of mutation profiling for tracking treat-
ment resistance. The advanced detection capabili-
ties of CRISPR diagnostics require microfluidic plat-
forms to integrate multiple detection methods for 
complete POC testing applications.
Microfluidic devices or lab-on-a-chip platforms oper-
ate with nanoliter fluid volumes to perform sample 
preparation, amplification, and detection functions, 
making them suitable for low-sample-volume appli-
cations, such as blood or saliva analysis. Microflu-
idic systems have been used in cancer diagnostics 
to detect various cancer-diagnostic factors while 
creating suitable nanoparticles for drug delivery, 
demonstrating their dual role in cancer diagnosis 
and treatment (58). The detection and characteri-
zation of CTCs represent a fundamental application 
of microfluidics technology because it helps mon-
itor metastasis and treatment response. Fachin et 
al. developed a microfluidic chip to detect and ana-
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Figure 3. Schematic overview (A) the electrochemical assay for miRNA detection was performed using a commercial gold electrode, an acid 
treated gold electrode, and a paper based carbon electrode decorated with gold nanoparticles (50); (B) the HiCASE assay for the detection 
of cfDNA sample (51); (C) the digital microfluidic (DMF) system was used for drug screening of biopsy samples from MDA-MB-231 breast 
cancer xenograft mouse model and patients with liver cancer (52).

B

C
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lyze CTCs in the blood of cancer patients. The chip 
successfully captured 95% of EpCAM-positive cells, 
allowing genomic analysis for direct trastuzumab 
therapy. The microfluidic system proved supe-
rior to CellSearch systems through its enhanced 
sensitivity and faster operation, which shows its 
capability for real-time metastasis tracking (59). 
Zhai et al. developed a portable digital microflu-
idic platform (23 × 16 × 3.5 cm3) that performs par-

allel screening of three anticancer drugs on a 4 × 
4 cm2 chip using primary tumour cells. The drugs 
that showed effectiveness on the chip device suc-
cessfully reduced tumour growth in animal mod-
els during MDA-MB 231 breast cancer xenograft 
and patient-derived liver cancer specimen tests. 
The device demonstrated potential for precision 
medicine guidance through whole exome sequenc-
ing which confirmed that effective agents main-

Table 1. A comparative analysis of essential biomarkers together with detection principles, validated specimen, cancer applications, analytical 
sensitivity, specificity and LOD to demonstrate each platform’s translational status and diagnostic potential.

BIOMARKERS PRINCIPLE OF 
DETECTION

CLINICAL / 
VALIDATED 
SPECIMEN

TYPE OF 
CANCER 

DETECTED
SENSITIVITY SPECIFICITY LOD REFERENCES

BCR–ABL1 & 
PML-RARA 
fusions  
(APL/CML)

CRISPR EDTA blood / 
dried spots Leukemia 100 % 100 % NA (61)

Glycoprotein 
Tumor 
Biomarkers

Electrochemically 
controlled Atom 
Transfer Radical 
Polymerization 
(eATRP)

Human serum 
samples

General 
(e.g., Alpha-
fetoprotein)

High High 0.32  
pg/mL (62)

EGFR L858R, 
T790M 
(Cas12a 
DETECTR)

Cas12a trans-
ssDNA collateral 
cleavage

Plasma NSCLC (lung) 100 100 0.005 % 
MAF (63)

Cas13, 
Cas12a, and 
Csm6

SHERLOCK-v2 
multiplex panel

Plasma & 
contrived 
cfDNA

General 
liquid-biopsy 
demonstration

High High
2 aM 
nucleic 
acid

(55)

CEA
Probe-integrated 
electrochemical 
immunosensor

Human serum 
samples

Colorectal 
Cancer High High 4 pg/mL (64)

AFP (Alpha-
Fetoprotein)

Homogeneous 
Electrochemical 
Immunoassay

Diluted 
human 
sera of 
hepatocellular 
carcinoma 
(HCC) patients

Hepatocellular 
Carcinoma High High 5 pg/mL (65)

QGY-7701; 
QGY-7703

Competitive 
Electrochemical 
Sensing

Cancer cell General 
Cancer High High

20  
cells/mL 
& 35  
cells/mL

(66)

Soluble HER2-
ECD

Screen-
printed ELISA 
immunosensor

Patient serum Breast  
cancer NA NA 4 ng mL–¹ (67)

Exosomes 
expressing 
CD63 & 
EpCAM

Microfabricated 
aptasensor 
combining 
CD63 capture, 
EpCAM aptamer 
bridging, 
HCR signal 
amplification, 
and HRP‑TMB 
electrochemical 
readout

Serum 
samples from 
lung cancer 
patients 
(early‑ & 
late‑stage), 
plus cultured 
cell‑line 
exosomes

Lung cancer High High
5 × 10² 
exosomes/
mL

(68)
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tained their target genes (Figure 3C) (52). Multi-
plex microfluidic platforms enable the simultane-
ous measurement of multiple cancer biomarkers 
from microliter-scale samples, thereby supporting 
comprehensive diagnosis, early detection, and evi-
dence-based therapy selection in precision oncol-
ogy. Chen et al. used magnetic-bead capture with 
acoustic micromixing to measure prostate-specific 
antigen and carcinoembryonic antigen in under 20 
minutes with detection limits of 0.028 ng mL–¹ and 
3.1 ng mL–¹, respectively. These results illustrate the 
feasibility of rapid, POC cancer diagnostics based 
on multi-analyte profiling (60). The integration of 
advanced diagnostic applications through micro-
fluidics can transform precision oncology by clos-
ing therapeutic gaps. Research has demonstrated 
its effects on different cancer types, leading to bet-
ter personalized treatments. This technology opti-
mizes clinical operations to deliver enhanced can-
cer care worldwide.
To help synthesize the diverse technologies dis-
cussed, Table 1 provides a summary of the major 
POC platforms mentioned, highlighting their clini-
cal application potential. This comparative overview 
supports the preceding discussion by visually orga-
nizing the diagnostic scope, sensitivity, and imple-
mentation status of each tool.

REGULATORY AND OPERATIONAL 
CHALLENGES
Despite the spectacular analytical sensitivity now 
achievable in precision oncology, very few tests have 
been validated in prospective (e.g. Guardant360 CDx 
for EGFR mutations in NSCLC), and global regulatory 
harmonization is lacking. Different regions (EU IVDR, 
US CLIA/FDA, ISO standards) apply varied thresh-
olds for evidence and performance, slowing global 
deployment. All of which inflate cost and lengthen 
timelines for regulatory submission.
Rigid in-vitro-diagnostic (IVD) frameworks that 
were originally drafted around single-analyte infec-
tious-disease strips do not map neatly onto multi-
marker oncology cartridges. The next-generation 
POC liquid-biopsy devices must still satisfy U.S. 
CLIA-waiver “simple test” criteria while simultane-
ously proving multiplex variant accuracy that nor-
mally requires high-complexity molecular laborato-
ries, a mismatch that slows 510(k)/De Novo submis-
sions and has left only a handful of cancer assays 
cleared to date (69).

Progress is further hampered by the absence of uni-
versally commutable reference materials for ctDNA, 
microRNA, and extracellular-vesicle targets. The 
integrated lab-on-a-chip review by Surappa et al. 
notes that most groups calibrate limits-of-detection 
with contrived spike-ins prepared in-house, making 
cross-platform performance claims difficult to har-
monize and complicating multi-site reproducibility 
studies demanded by regulators (33).
Operationally, the most consistent pain points 
involve pre-analytical variability and supply-chain 
resilience. Paper-based liquid-biopsy platforms 
demonstrate how hemolysis, diurnal swings in EV 
release, and freeze-thaw cycles can each shift elec-
trochemical readouts by more than one standard 
deviation, forcing manufacturers to integrate on-car-
tridge normalization controls and environmen-
tal sensors, which in turn raise cost and assembly 
complexity.
The implementation of POC testing has the poten-
tial to transform precision oncology through bedside 
biomarker analysis; however, its adoption remains 
limited by major technical challenges. POC devices 
must precisely measure trace tumor-derived ana-
lytes, including circulating nucleic acids, in complex 
biofluids while functioning in different environmental 
settings. The combination of temperature changes 
and sample contamination along with environmen-
tal disturbances leads to assay accuracy degrada-
tion which results in unreliable results when tests 
are performed outside laboratory control (70).
Finally, real-world deployment in low- and middle-in-
come countries (LMICs) encounters infrastructure 
limitations-intermittent power, limited cold-chain 
capacity, and scarce biomedical-engineering sup-
port-that can erode field accuracy by up to 20 % rel-
ative to controlled settings. A 2025 review of oncol-
ogy POC implementation in LMICs calls for locally 
manufactured consumables, solar-powered readers, 
and streamlined post-market surveillance to sustain 
diagnostic precision outside tertiary centers (71).
The solution to these barriers requires coordinated 
innovation efforts. The adoption process will speed 
up through platforms that are accessible to all and 
resilient and use unified data standards and adap-
tive risk-based regulatory pathways. The implemen-
tation of scalable workforce training and robust ethi-
cal frameworks will protect data security and ensure 
equitable access. The implementation of these pil-
lars will enable POC diagnostics to redefine preci-
sion oncology by providing fast individualized care 
across the world.
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Finally, the ecosystem necessary for the success-
ful implementation of POC oncology diagnostics is 
inherently complex. It requires coordinated efforts 
among diagnostic developers, clinicians, regulatory 
authorities, payers, and standards organizations.

FUTURE DIRECTIONS AND 
CONCLUSIONS
The next wave of POC precision-oncology devices is 
moving toward single-cartridge, ultra-sensitive and 
highly multiplexed platforms that couple CRISPR/
Cas recognition, nanomaterial signal amplification, 
and fully integrated microfluidics. In the coming 3-5 
years, these lab-on-chip architectures are expected 
to converge with wearable biosensors-flexible elec-
trochemical patches, microneedle fluidics, or smart-
phone-coupled optical readers, supporting contin-
uous or immediate, on-demand cancer-biomarker 
surveillance outside formal clinic walls.
For clinical integration, engineering priorities are 
shifting toward closed, sample-to-answer system that 
run on finger-stick blood, urine, or saliva and can be 
operated by self, nurses or community health work-
ers after minimal training. Bluetooth/FHIR-compli-
ant connectivity will push results straight into elec-
tronic health records and multidisciplinary tumor-
board dashboards, facilitating rapid therapeutic 
alignment and longitudinal monitoring without cen-
tralized laboratory dependencies.
Translational success, however, hinges on standard-
ization and regulation. Achieving global health equity 
remains a pressing mandate. Although most com-
mercial POC cancer tests are currently configured 
for high-resource markets, the greatest diagnostic 
gaps exist in LMICs. Future development must there-
fore emphasize low-cost readers with battery or solar 
power, lyophilized reagents stable at tropical tempera-
tures, and open-source firmware that can be local-
ized for language and connectivity constraints (71).
Collectively, the literature paints a clear trajectory: POC 
diagnostics are poised to transform precision oncol-
ogy by collapsing the temporal and geographic gap 
between biomarker measurement and clinical action.
The technological capability to match centralized 
laboratories in sensitivity is emerging; the challenge 
now is to embed these advances into rigorous yet 
agile regulatory frameworks, pragmatic clinical work-
flows, and equity-focused distribution models. With 
sustained interdisciplinary collaboration and delib-
erate attention to global implementation, POC pre-

cision-oncology testing can redefine cancer care as 
a rapid, individualized, and universally accessible 
enterprise.
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ABSTRACT: Generative artificial intelligence (GAI) applied to clinical diagnostics and research is reshaping the panorama of precision 
oncology. Combining hematoxylin-eosin-stained whole slide images with computational algorithms opens new avenues in digital 
pathology. GAI allows for extracting molecular, immunological, and prognostic information based on routinely processed histological 
sections and removes the need for additional molecular testing.
In oncology, GAI models excelled in cancer histotyping, malignancy ranking, molecular profiling, identification of prognostic and 
predictive biomarkers, and inference of immune gene signatures. The latest foundational models provide additional opportunities 
to develop generalizable, scalable tools that can be consistently leveraged in line with pathology missions.
However, several challenges must still be addressed to optimize GAI performance and encourage its clinical application. These 
include data quality, algorithm bias, generalizability across institutions, and validation through robust multicenter trials. This strategy 
is crucial for increasing clinical confidence, ensuring reproducibility, and facilitating the routine use of AI in precision oncology.
This review focuses on the operational application of computational pathology within the broader context of precision oncology. It 
addresses the most significant technical innovations in biomarker assessment and critically examines the priorities to enhance the 
reliability, scalability, and performance of AI-driven tools in precision oncology.
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INTRODUCTION
Histology is regarded as the gold standard for diag-
nosing human diseases, including cancer (1). In recent 
years, the rapid emergence of artificial intelligence 
(AI)-driven models in digital and computational 
pathology (2) has revolutionized cancer histopa-
thology, significantly advancing both cancer research 
and clinical oncology (3, 4).
The integration of AI into surgical pathology is accel-
erating progress across various oncological domains, 
including cancer subtyping (5), survival prediction 
(6), and detection of nodal metastasis (7). More-
over, deep learning (DL) models have shown the 
ability to identify clinically relevant genetic alter-
ations, such as microsatellite instability (MSI) (8) and 
multiple gene mutations (9), from hematoxylin and 
eosin-stained (H&E) sections (10, 11). Furthermore, 
AI-based tools have been developed in oncology, 
such as grading in prostate cancer (12) and, more 
recently, predicting DNA methylation profiles from 
histology sections (13).
In this review, we describe the emerging role of 
artificial intelligence in oncology, with a particular 
focus on computational histopathology (Figure 1). 
We aim to highlight the transformative potential of 
AI-driven models in shaping the future of precision 
oncology, ultimately supporting more accurate and 
high-quality cancer diagnoses.

THE INTRODUCTION OF 
SCANNERS IN PATHOLOGY 
DEPARTMENTS: THE ROLE OF 
WHOLE-SLIDE IMAGES (WSIS) IN 
COMPUTATIONAL PATHOLOGY
The introduction of slide scanners for digitizing glass 
slides in pathology, along with the growing use of AI 
for research and diagnostics, signifies a pivotal shift 
in precision oncology. Despite the promise of AI in 
clinical workflows, several challenges persist (14).
Adopting new technologies often necessitates 
rethinking established practices. In pathology, slide 
scanners gradually replace the optical microscope, 
the pathologist’s primary tool, with digital workflows. 
Routine slide digitization generates WSIs of cancer-
ous tissues, serving as a crucial entry point for incor-
porating digital tools in diagnostics (15).
WSI technology enables the application of machine 
learning (ML) and dep learning (DL) algorithms to 
histopathological images, allowing for clinically rele-
vant data extraction to aid in cancer diagnosis, prog-
nosis, and treatment decisions (16-18). The broader 
implementation of WSI is expected to significantly 
influence diagnostic pathology, facilitating AI-sup-
ported precision diagnosis (19).
In oncology, DL algorithms have shown the capability 
to extract vital information from H&E-stained WSIs 
alone, such as tumor classification and treatment 

Figure 1. Workflow of AI-Based Computational Pathology for Precision Oncology. 
Machine learning and deep learning models extract molecular and prognostic insights from H&E-stained whole slide images, supporting 
clinical interpretation and outcome prediction. H&E = Hematoxylin and Eosin; WSI = whole-slide images; AI = Artificial Intelligence.
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selection (20), metastatic potential prediction (21), 
and identifying primary sites in cancers of unknown 
origin (22). Moreover, WSIs allow the extraction of 
molecular-level data, including immunohistochemical 
and histochemical markers, directly from H&E slides. 
This includes predictions of PD-L1 and PD-1 expres-
sion (23) and mutational status across cancer types 

(24-26). Such tools could soon offer fast, cost-effec-
tive methods to inform personalized treatments.
The integration of slide scanners and routine WSI 
use, combined with AI-driven models, presents a sig-
nificant opportunity for both healthcare institutions 
and research centers (27). Digital pathology through 
WSI technology has the potential to transform can-

Table 1. Summary of published studies applying AI models to histopathology for biomarker prediction and clinical tasks.

STUDY YEAR CANCER TYPE/TASK AI METHODOLOGY MAIN FINDINGS REF.

Coudray et al. 2018 NSCLC – mutation 
classification CNN on H&E

Predicted mutations (EGFR, 
STK11, TP53, etc.) and PD-L1 
status

(24)

Skrede et al. 2020 Colorectal – outcome 
prediction

Deep learning on 
WSIs

DL model predicted 
prognosis with high AUC (6)

Kather et al. 2020 Pan-cancer – actionable 
mutations AI on H&E Detected multiple genetic 

alterations from histology (10)

Fu et al. 2020 Pan-cancer – mutation 
& composition CNN on H&E Inferred mutations, cell types 

and prognosis (25)

Qu et al. 2021 Breast – pathway 
prediction

Deep learning on 
WSIs

Predicted mutations and 
signaling pathways (26)

Lu et al. 2021 Cancer of unknown 
primary

AI on H&E + weak 
supervision

Predicted tissue of origin with 
high accuracy (22)

Saldanha et al. 2023 Pan-cancer – mutation 
prediction Self-supervised DL Accurate prediction of 

genomic alterations (11)

Shamai et al. 2022 Breast – PD-L1 
prediction DL on H&E AI matched IHC PD-L1 

expression (52)

Wang et al. 2022 NSCLC – PD-L1 scoring Multimodal DL Fusion model predicted PD-
L1 & survival (55)

van Eekelen et al. 2024 NSCLC – PD-L1 scoring Cell-level DL AI showed better 
reproducibility vs pathologists (56)

Jin et al. 2024 Pan-cancer (20 types) 
– PD-L1

Multiple instance 
learning

AUC 0.83 on >12k slides, 
mRNA correlation (57)

Saillard et al. 2023 Colorectal – MSI 
screening

AI-based MSI 
detection (MSIntuit)

Validated model for MSI 
prediction on H&E (36)

Arslan et al. 2022 Multi-cancer – multi-
omic prediction DL on H&E Predicted mutations, 

expression, MSI, CNAs (37)

McCaw et al. 2024 Pan-cancer – digital 
biomarkers ML on histology Predicted multiple digital 

biomarkers from WSIs (38)

Nakatsuka et al. 2025 NASH – HCC prediction DL on liver biopsies Predicted HCC development 
years in advance (69)

Hoang et al. 2024 CNS tumors – DNA 
methylation DL on histology Inferred methylation subtype 

from slides (13)

Amgad et al. 2024 Breast – prognostic 
biomarker

Population-level 
digital pathology

Created a histological 
biomarker for prognosis (75)

Chen et al. 2024 Pan-cancer – general 
model

Foundation model 
(UNI)

Predicted 108 cancer types 
from WSIs (78)

AI = Artificial Intelligence, CNN = Convolutional Neural Network, DL = Deep Learning, H&E = Hematoxylin and Eosin, IHC = Immunohistochemistry, 
ML = Machine Learning, MSI = Microsatellite Instability, NSCLC = Non-Small Cell Lung Cancer, PD-L1 = Programmed Death-Ligand 1, 
PD-1 = Programmed Cell Death Protein 1, WSI = Whole Slide Image, CNS = Central Nervous System, NASH = Non-Alcoholic Steatohepatitis, 
HCC = Hepatocellular Carcinoma, CNA = Copy Number Alteration, mRNA = Messenger Ribonucleic Acid, MSI = Microsatellite Instability, 
UNI = Universal foundation model for computational pathology, AUC = Area Under the Curve.
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cer diagnosis and research by converting conven-
tional slides into digital data, laying the groundwork 
for computer-assisted diagnostics (28).
WSIs provide the foundation for fully digitized pathol-
ogy workflows, backed by AI-powered decision-sup-
port systems. These tools leverage computational 
histopathology to enhance diagnostic accuracy and 
consistency (29). The ongoing digitalization of pathol-
ogy departments, alongside advances in ML and DL, 
is poised to accelerate oncological research and fos-
ter the development of AI-assisted diagnostic tools 
for various malignancies (30).

ML-MODELS ALLOW THE 
PREDICTION OF MULTIPLE 
BIOMARKERS FROM WHOLE SLIDE 
HISTOPATHOLOGY IMAGES
One of the most intriguing aspects of AI in digital 
pathology is its ability to predict multiple biomark-
ers, including mutation status, from H&E-stained 
WSIs (2, 11). Recent AI-driven models can now pre-
dict diagnostic and predictive biomarkers such as 
immunohistochemical, genetic, epigenetic, and in 
situ hybridization markers. Traditionally, identifying 
these biomarkers requires manual assessment by 
trained pathologists, a time-consuming and costly 
process that can delay diagnosis and treatment.
The progressive adoption of digital pathology has 
been complemented by the development of an alter-
native approach, whereby AI models analyze rou-
tinely acquired H&E-stained WSIs to extract multi-
ple predictive biomarkers. These include key molec-
ular features that are instrumental in-patient strat-
ification for targeted therapies (31-33). This para-
digm shift has revealed that H&E-stained sections, 
long considered tools primarily for morphological 
assessment, contain a rich reservoir of latent molec-
ular information.
WSIs can now support automated disease detection, 
histological and molecular subtyping, and tumor 
grading, as well as prognostic evaluation, survival 
prediction, and treatment planning (33). AI models 
trained on H&E-stained WSIs have demonstrated 
the ability to predict a range of molecular biomark-
ers across different cancer types (34-36). Addition-
ally, emerging studies suggest that WSIs may also 
be used to infer other molecular alterations, such as 
RNA expression patterns and protein abundance (37).
While initial efforts focused on models trained to 
predict a single biomarker in a specific cancer type, 

newer frameworks now predict multiple biomarkers, 
including copy number alterations and RNA-derived 
signatures, across various malignancies (38). These 
findings emphasize the vast, clinically relevant data 
embedded in standard H&E-stained slides. Table 1 
provides an overview of significant studies utilizing 
AI for biomarker prediction, tumor classification, 
and outcome forecasting across diverse cancers.
Given the widespread use of H&E-stained slides 
in pathology laboratories globally, digitizing these 
images could enable the deployment of AI-driven 
biomarker prediction models even in low-resource 
settings, potentially benefiting a broader patient 
population.

DL-MODELS APPLIED TO THE 
PREDICTION OF PD-1 AND PD-L1 
EXPRESSION BASED ON H&E-
STAINED SECTIONS
The immune system maintains a balance between 
eliminating harmful pathogens and preserving 
self-tolerance, regulated by immune checkpoints 
like PD-1 (39). PD-1, a key checkpoint receptor, mod-
ulates T-cell activity to maintain peripheral toler-
ance, preventing autoimmune responses (40, 41).
The identification of PD-1 and its ligand PD-L1 in 
tumor cells, first reported in 2002, unveiled a criti-
cal mechanism of immune evasion by which tumors 
exploit immune checkpoint pathways to evade 
immune surveillance (42). PD-L1 is predominantly 
expressed on the surface of tumor cells but can 
also be released in the tumor microenvironment via 
exosomes, amplifying immune suppression (43, 44). 
Given its role in promoting tumor immune escape, 
PD-L1 has become a major target in cancer immu-
notherapy (45-48).
Traditionally, PD-L1 expression is assessed through 
immunohistochemistry (IHC), which remains the 
standard in clinical practice (49-51). However, despite 
its widespread use, IHC presents several challenges: 
it is time-consuming, costly, and may deplete limited 
tissue samples, particularly in small biopsies. Fur-
thermore, interpretation of PD-L1 staining is prone 
to significant variability due to differences in stain-
ing protocols, subjective interpretation of staining 
intensity, and interobserver variability, especially 
in borderline cases (52, 53). This inconsistency can 
critically impact clinical decision-making, potentially 
misclassifying patients and affecting their eligibility 
for immune checkpoint inhibitors.
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Digital pathology and AI-driven models offer a prom-
ising alternative, providing a more standardized and 
reproducible assessment of PD-L1 expression by ana-
lyzing WSIs across multiple tumor regions (54). Unlike 
manual scoring, AI models can systematically quan-
tify PD-L1 expression across heterogeneous tumor 
regions, reducing variability and enhancing diag-
nostic accuracy. For instance, AI algorithms applied 
in lung cancer demonstrated high accuracy in pre-
dicting PD-L1 status, aligning closely with patholo-
gist assessments even in challenging cases (55, 56).
A pivotal study by Jin et al. introduced a pan-can-
cer AI model capable of predicting PD-L1 expres-
sion directly from H&E-stained WSIs, analyzing over 
12,000 slides from 20 tumor types and achieving a 
mean area under the curve (AUC) of 0.83 (57). The 
model’s predictions were validated against conven-
tional IHC and mRNA expression, underscoring the 
potential of AI to standardize biomarker assessment 
and minimize interobserver variability.
Table 2 summarizes selected studies comparing 
AI-based digital pathology approaches with conven-
tional immunohistochemistry for PD-L1 assessment 
across different tumor types.

This shift toward AI-driven PD-L1 evaluation reflects 
the emerging paradigm of “intelligent digital pathol-
ogy”, where AI augments conventional diagnostics, 
potentially accelerating therapeutic decision-mak-
ing, expanding access to precision oncology, and 
ensuring more consistent biomarker assessment 
across diverse clinical settings (32, 58, 59).
The clinical integration of this approach is partic-
ularly relevant in the context of therapeutic deci-
sion-making. By predicting multiple biomarkers, 
including immune checkpoint-related proteins and 
mutational profiles, from routine H&E-stained slides, 
AI-driven pathology can guide the selection of tar-
geted therapies or immunotherapies. For instance, 
in advanced non-small cell lung cancer or gastric can-
cer, accurate prediction of PD-L1 expression or MSI 
status directly from histology can streamline treat-
ment eligibility decisions and reduce dependence on 
costly or time-consuming molecular assays (24, 36, 
52, 55, 57). Additionally, in multidisciplinary oncol-
ogy settings, integrating AI-generated outputs into 
tumor board discussions may enhance personal-
ized care planning, particularly when biopsy mate-
rial is limited or when rapid turnaround is needed.

Table 2. Comparison between immunohistochemistry (IHC) and AI-based digital pathology for PD-L1 assessment.

FEATURE IMMUNOHISTOCHEMISTRY 
(IHC)

AI-BASED DIGITAL PATHOLOGY 
(ON H&E WSIS) REF.

Sample 
requirement

Requires additional antibody-based 
staining

Uses routine H&E-stained slides already 
available in pathology labs

(49-51)/
(24, 57)

Tissue 
consumption

Consumes precious tissue, critical in 
small biopsies

No additional tissue required; preserves 
material for other tests

(52)/  
(23/37)

Cost High costs due to antibodies, 
reagents, and specialized equipment

Lower long-term costs after digitization 
infrastructure is in place

(53)/
(24, 57)

Turnaround 
time

Time-consuming due to staining and 
manual interpretation

Faster analysis after digitization and 
model deployment

(52)/
(23, 55, 57)

Expertise 
required

Requires experienced pathologists 
for accurate interpretation

AI supports interpretation; reduces 
reliance on specialist expertise

(52, 53)/
(54, 56)

Interpretation 
variability

High inter- and intra-observer 
variability

Provides standardized, reproducible 
results

(53)/
(54, 56)

Accessibility Often unavailable in peripheral or 
low-resource settings

H&E-based AI tools are scalable and 
suitable for resource-limited contexts

(52)/
(24, 57)

Multiplexing 
capability

Generally limited to one biomarker 
per slide

Potential to predict multiple biomarkers 
from a single H&E image

(49-51)/
(25, 26, 36-38)

Molecular 
correlation Direct protein expression detection Can predict mRNA expression, mutation 

status, and other molecular features
(50)/
(37, 38, 57)

Scalability and 
automation Manual, slow, and hard to scale Fully automatable and scalable across 

large datasets
(52)/
(23, 54, 57)

IHC = Immunohistochemistry, AI = Artificial Intelligence, H&E = Hematoxylin and Eosin, WSI = Whole Slide Image, mRNA = Messenger 
Ribonucleic Acid.
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DEEP LEARNING APPLIED TO 
DIGITAL PATHOLOGY IN THE 
PREDICTION OF HCC
Non-alcoholic steatohepatitis (NASH), a progressive 
form of non-alcoholic fatty liver disease (NAFLD), 
is now recognized as the leading cause of chronic 
liver disease and a key risk factor for hepatocel-
lular carcinoma (HCC) (60). Histologically, NASH is 
marked by macrovesicular steatosis, lymphocytic 
infiltration, hepatocellular ballooning, apoptotic 
bodies, and varying degrees of fibrosis (61). Tra-
ditionally, fibrosis has been considered the stron-
gest predictor of adverse outcomes, including cir-
rhosis and HCC (62, 63). However, over 50% of 
NASH-related HCC cases arise in non-cirrhotic liv-
ers, indicating that other histological and molec-
ular features beyond fibrosis may drive carcino-
genesis (64, 65).
Recent AI-based models have been applied to 
the automated assessment of liver fibrosis and 
other NASH-related histological changes, demon-
strating ML techniques’ key advantage in provid-
ing objective, quantitative evaluations that reduce 
interobserver variability and support more consis-
tent longitudinal disease monitoring (66, 67). DL 
approaches, in particular, have shown significant 
promise in identifying subtle histological markers 
associated with early carcinogenesis that may be 
missed in conventional assessments, extending 
predictive capabilities beyond fibrosis and nodu-
lar regeneration (68).
A significant study by Nakatsuka et al. explored a 
DL model to predict HCC development using only 
H&E-stained WSIs of liver biopsies from steatosis 
patients (69). The model aimed to identify individu-
als at higher HCC risk solely based on liver steatosis 
analysis, achieving an AUC of 0.80 for predicting HCC 
onset within seven years post-biopsy. Notably, the 
model identified at-risk patients without advanced 
fibrosis, underscoring the role of additional histo-
logical features in liver tumorigenesis.
Through saliency map analysis, the model highlighted 
key predictors of HCC development, including a high 
nuclear-to-cytoplasmic ratio, nuclear atypia, lym-
phocytic infiltrates, and the absence of large lipid 
droplets. These findings suggest that AI models can 
detect subtle histological changes predictive of liver 
cancer risk in routine biopsies, potentially without 
expensive molecular assays (69).
This work emphasizes two critical points: first, AI 
algorithms can extract complex histological signals 

indicative of future disease progression; second, 
integrating AI with digital pathology, or computa-
tional pathology (CPath), may revolutionize liver his-
topathology by enhancing diagnostic accuracy, aid-
ing prognostic stratification, and supporting preven-
tive strategies in NASH-related HCC (69).

TOWARDS A GENERAL 
FOUNDATION MODEL FOR 
COMPUTATIONAL PATHOLOGY
In routine clinical practice, pathologists are responsi-
ble for a broad spectrum of diagnostic tasks, includ-
ing cancer detection, subtyping, grading, and stag-
ing. These tasks require consideration of thousands 
of potential differential diagnoses. To address these 
challenges, a wide range of AI models have been 
developed in recent years, particularly within the 
domains of digital and computational pathology (70, 
71). Among the most promising innovations is the 
development of AI-driven models capable of multi-
modal data integration, which should combine clin-
ical, genomic, epigenomic, radiomic, pathomic, and 
microbiological data to provide a more comprehen-
sive view of the oncologic landscape (72). Compu-
tational pathology (CPath) has demonstrated the 
potential to predict molecular alterations directly 
from histopathological images, including microsat-
ellite instability (MSI) (8, 73, 74), patient prognosis 
(75), and treatment response (76). However, most 
of these models are trained for a specific cancer 
type and are limited to predicting a narrow set of 
molecular or immunohistochemical features, which 
restricts their applicability in diverse clinical con-
texts. To overcome these limitations, a new class 
of AI tools has emerged: multi-cancer, multi-bio-
marker models designed to simultaneously pre-
dict a wide range of molecular alterations across 
various tumor types using standard H&E-stained 
slides (39). These systems, defined as “foundation 
models,” are characterized by their scalability, ver-
satility, and adaptability to multiple diagnostic tasks 
and cancer types (77). In this direction, a gener-
al-purpose foundation model for computational 
pathology, defined as UNI, has been recently intro-
duced by Chen TJ and colleagues (78). Pretrained 
on over 100 million images, the UNI model demon-
strated the capacity to classify up to 108 cancer 
types, marking a significant advancement toward 
the integration of AI into routine workflows in ana-
tomic pathology Labs.
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COMPUTATIONAL PATHOLOGY IN 
ONCOLOGY
Artificial intelligence has emerged as a revolution-
ary tool for the discovery of predictive biomark-
ers in human cancers. AI-based methods are rede-
fining the landscape for researchers, pathologists, 
and oncologists, demonstrating the potential of 
well-trained algorithms to extract clinically rele-
vant molecular information directly from routinely 
stained H&E sections.
When applied to clinical practice, the advantages 
of this paradigm shift are numerous. One of the 
most significant is the speed of analysis: the aver-
age computational time to generate a PD-L1 prob-
ability map has been reported at approximately 40 
seconds, with a range from 7.9 to 66 seconds (79). 
This indicates that, with a robust and validated DL 
model, pathologists could provide near-instanta-
neous estimates of PD-L1 expression, facilitating 
timely and personalized therapeutic decisions for 
oncologists (87).
In addition to rapidity, AI-based approaches offer 
substantial cost-saving opportunities. The reliance on 
conventional immunohistochemistry, dependent on 
specialized reagents, equipment, and trained person-
nel, may be significantly reduced or even replaced. 
The possibility of identifying genes and immune-re-
lated biomarkers, such as PD-L1, directly from H&E 
sections without antibody-based detection opens 
intriguing transformative possibilities, particularly 
for decentralized and resource-limited settings.
Furthermore, AI-driven histopathological analy-
sis enables the extraction of novel insights beyond 
PD-L1 expression, potentially enhancing clinical deci-
sion-making. Immune pathology, a key founda-
tion for immune checkpoint inhibitor (ICI) thera-
pies, remains a relatively underexplored area within 
diagnostic pathology. AI methodologies could facil-
itate the identification of novel “metabiomarkers”, 
complex, integrative features predictive of ICI ther-
apy response (82). This hypothesis is supported by 
recent evidence showing that DL models can pre-
dict immune and inflammatory gene signatures in 
hepatocellular carcinoma directly from histologi-
cal images (83).
Taken together, these findings underscore the poten-
tial of AI, particularly DL algorithms, to extract multi-
ple molecular and immunological biomarkers from 
standard histology, enabling the discovery of novel 
predictive features and advancing the goals of pre-
cision oncology. Computational pathology (also 

referred to as pathomics) thus represents a unique 
opportunity: to serve as a rapid, cost-effective, and 
integrative diagnostic tool for clinicians, oncolo-
gists, and surgeons alike, delivering morphologi-
cal, genetic, and molecular data in near real time.
Another major strength of computational pathology 
lies in its ability to generate large-scale datasets of 
digitized slides, which can be integrated with com-
plementary clinical (real-world data), genomic, epig-
enomic, microbiologic, radiologic (radiomics), and 
laboratory information. This multimodal integra-
tion offers the potential to define novel metabio-
markers, which can outperform unimodal mod-
els in terms of predictive accuracy, as measured by 
improved AUC metrics (76).
Moreover, computational pathology can address a 
long-standing challenge in diagnostic histopathol-
ogy: interobserver variability. This is particularly rel-
evant for PD-L1 scoring, which is known to vary sig-
nificantly among both expert and generalist pathol-
ogists (84-86). While DL models can provide more 
consistent and standardized assessments of PD-L1 
expression, their capacity to directly infer molecular 
and transcriptomic features from histology offers a 
far more transformative leap than simply resolving 
variability issues.
For successful adoption in clinical practice, AI-based 
computational pathology systems must be inte-
grated into existing digital workflows within pathol-
ogy departments. This includes embedding AI mod-
els into slide viewers and laboratory information sys-
tems (LIS), allowing pathologists to access real-time 
predictions directly from digitized H&E slides. Addi-
tionally, the deployment of AI tools should be sup-
ported by intuitive, clinician-oriented interfaces that 
facilitate interpretation and integrate seamlessly into 
the diagnostic process. Real-world implementation 
also requires rigorous prospective validation stud-
ies and standardized protocols to demonstrate clin-
ical utility. Importantly, AI-driven solutions should 
be designed to complement rather than replace 
human expertise, acting as decision-support tools 
that enhance diagnostic accuracy, reproducibility, 
and efficiency in oncology care.

NEXT CHALLENGES
Along with its unquestionable advantages, the 
real-world implementation of computational his-
tology entails several major issues that need to be 
addressed before AI models can be safely and effec-
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tively integrated into clinical practice, particularly 
within the field of immuno-oncology. The major 
current limitations hindering clinical implementa-
tion are summarized below:
1. Data Quality and Availability: robust algorithm 
performance requires access to large volumes of 
high-quality, well-annotated data. However, onco-
logic datasets are often incomplete, heterogeneous, 
biased, and inherently complex, limiting model gen-
eralizability and reproducibility.
2. Model Selection Complexity: the proliferation of 
ML and DL algorithms, often promoted through mar-
keting strategies emphasizing innovation rather than 
practical limitations and clinical safety, can make it 
challenging for researchers and clinicians to select 
the most appropriate model for specific applica-
tions. While advanced DL models are widely mar-
keted as cutting-edge solutions, classical ML mod-
els may outperform them in low-data scenarios and 
should not be overlooked, particularly when sam-
ple sizes are limited (87).
3. Regulatory Certification: certification is a critical 
prerequisite for clinical adoption. At present, there 
is no universally accepted regulatory pathway for 
the validation and certification of AI-based tools in 
pathology. The establishment of worldwide (or at 
least continental-wide) standardized, harmonized 
processes for model certification should be encour-
aged to ensure safety and efficacy.
4. Lack of Guidelines and Protocols: clear proto-
cols and guidelines for conducting rigorous, clini-
cally meaningful studies on AI model applicability 
are currently lacking. This gap hinders reproduc-

ibility and delays the translation of research find-
ings into clinical practice.
5. Lack of Trust and Interpretability: a significant 
barrier to clinical implementation is the skepticism 
among healthcare professionals, including patholo-
gists, regarding the reliability and transparency of AI 
tools. Improving model interpretability is essential 
to foster trust. Techniques from the field of explain-
able artificial intelligence (XAI) may help to demystify 
algorithmic decision-making and reduce the “black 
box” effect (88, 89).
6. Insufficient External Validation: AI models that 
perform well on internal datasets often fail when 
applied to external, real-world data. To ensure clin-
ical robustness, models should be validated using 
diverse, multi-institutional datasets. One proposed 
strategy is divergent validation, which evaluates 
model performance across various independent 
datasets to enhance generalizability and transpar-
ency (90, 91).
6. Bias and Variability: algorithmic biases can result 
from inconsistencies in slide staining, errors in label-
ing the data sets used for training, scanner calibra-
tion, or demographic imbalances in training data. 
These factors can significantly impair model perfor-
mance and reliability. Reducing such biases is cru-
cial to enable fair and accurate deployment of AI 
models in clinical settings.
Despite these several interconnected limitations, 
the primary obstacle hindering the widespread 
use of AI strategies in clinical practice is the lack of 
standardized and universally accepted pathways 
for validation and certification. Without clear regu-

Table 3. Current challenges and proposed solutions for the clinical integration of AI in computational pathology.

CHALLENGE DESCRIPTION SUGGESTED SOLUTIONS REF.

Data Quality Incomplete, biased, 
heterogeneous datasets

Centralized data curation and 
federated learning (1, 92)

Model Selection Difficult choice among ML/DL 
models

Model comparison guidelines, 
model benchmarking (89)

Certification Lack of standard regulatory 
pathways

International consensus on AI 
model validation –

Trust and Interpretability Lack of clinician trust due to 
black-box nature XAI, transparent algorithms (90–91)

Interobserver Variability Variability in human assessment 
(e.g., PD-L1 scoring)

Algorithmic standardization, 
model calibration (86–88)

External Validation Limited generalizability across 
datasets

Multi-institutional validation, 
divergent validation (90-91)

Staining and demographic biases Bias in data acquisition and 
population representation

Dataset balancing, domain 
adaptation techniques –

ML = Machine Learning, DL = Deep Learning, AI = Artificial Intelligence, PD-L1 = Programmed Death-Ligand 1, XAI = Explainable Artificial 
Intelligence.
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latory guidance and robust multicenter validation 
studies, many AI-based models remain restricted to 
research settings. This uncertainty, coupled with a 
lack of transparency in algorithmic outputs, contin-
ues to undermine clinician trust and delays the full 
integration of AI into routine oncologic diagnostics.
The key limitations currently hindering the imple-
mentation of AI in clinical workflows, along with pro-
posed solutions, are summarized in Table 3.

CONCLUSIONS
The introduction of AI-driven models has triggered 
a true revolution in oncology, with applications 
spanning from the interpretation of medical imag-
ing to the enhancement of diagnostic and prognos-
tic accuracy, including prediction of overall survival 
and response to various therapeutic strategies (92). 
Among these tools, convolutional neural networks 
(CNNs) have emerged as indispensable new tools 
for the recognition and classification of both histo-
logical and radiological images. CNNs can detect 
subtle and complex patterns that may escape even 
the most experienced pathologists and radiologists.
A key strength of CNNs lies in their ability to auton-
omously learn from data, particularly when trained 
on large, high-quality datasets. This has enabled 
a shift from traditional machine learning towards 
deep learning in medical image analysis. CNNs have 
demonstrated outstanding performance in tasks 
such as cancer detection, histological classification, 
and subtype recognition.
More recently, advanced CNN-based architectures 
have achieved notable success in cancer diagnostics. 
For instance, CNNs combined with Long Short-Term 
Memory (LSTM) networks have shown promise in 
predicting cancer prognosis by capturing temporal 
patterns in patient data. Spatially Constrained CNNs 
(SC-CNNs) have proven effective for nuclei classifi-
cation in colorectal cancer, enhancing precision in 
histopathological assessment. Moreover, the inte-
gration of CNNs with Fourier Transform Infrared 
(FTIR) spectroscopy has yielded promising results 
for accurate cancer detection in biopsy specimens.
Taken together, these developments highlight the 
transformative role of AI in advancing precision 
oncology, in which context pathology assumes a piv-
otal role. Manual interpretation of medical images 
remains susceptible to human error and interob-
server variability. In this context, AI-based method-
ologies, particularly those leveraging CNNs, offer 

robust solutions to improve diagnostic consistency 
and uncover patterns beyond human perception. 
These innovations pave the way for more refined, 
data-driven approaches to cancer detection, classifi-
cation, and treatment selection, ultimately support-
ing the realization of a truly personalized oncology. 
This constellation of technological advancements fos-
ters a more data-driven, patient-centered approach 
to precision oncology. It creates a new medical uni-
verse that aligns with tailored cancer care’s ethical 
and scientific mission. Pathology plays a pivotal role 
in this evolving “computational” landscape, echo-
ing the transformative impact once initiated by Vir-
chow’s microscope.
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BACKGROUND
Lung cancer (LC) represents a leading cause of death 
worldwide, contributing to a high percentage of can-
cer-related deaths in both sexes (1). However, over 
the last decade, novel targeted therapies and immu-

notherapies have been developed due to the discov-
ery of different mutations and aberrations in driver 
oncogenes (2, 3). Based on this, molecular testing 
and clinical biomarkers are now routinely used in 
clinical practice for the management of advanced 
LC, including the search for activating mutations 
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ABSTRACT: in recent years, imaging techniques have been successfully used to deliver diagnostic biomarkers with even greater 
accuracy. In particular, radiomic analysis methods (application of artificial intelligence on radiological images), which describe a 
segmented tumor region, using various quantitative characteristics derived from radiological images, have shown great potential 
in the identification, characterisation/classification of different types of cancer and in evaluating the response to radiotherapy and 
chemotherapy. Liquid biopsy is used for both early screening of malignancy and diagnosing minimal residual disease. It is also 
performed to assess and monitor the response to pharmacological treatments for a personalised therapeutic strategy. The analysis 
of morphostructural data obtained by imaging, correlated with the genetic/molecular results of liquid biopsy, could provide useful 
predictive factors for early diagnosis and predicting the response to anti-cancer drugs. The study aims to design and develop a 
report structured in CT with contrast media, which includes, in addition to the subjective evaluation of the radiologist, a quantitative/
objective assessment of lung cancer (LC) with features that describe the texture and morphology of the lesion. Therefore, we present 
a workflow aimed at extracting the DICOM images acquired with CT using contrast medium from a significant number of patients, 
and to evaluate their accuracy in characterising the LC lesions. Furthermore, these data will be correlated to gene mutations and 
epigenetic changes (DNA methylation) evaluated in circulating tumour DNA derived from peripheral blood with a liquid biopsy 
approach. The correlation between radiomic characteristics, quantitative analysis of tumours performed by CT, structured lesion 
reports, and liquid biopsies could help avoid many unnecessary biopsy procedures and enable personalised treatment of LC patients.
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Figure 1. Workflow of the LIDIA project, from patient enrollment to data analysis, AI modelling, clinical validation, and personalized treatment.

of epidermal growth factor receptor (EGFR), BRAF, 
HER2, MET, ERBB2 and KRAS, rearrangements of ana-
plastic lymphoma kinase (ALK) and ROS proto-onco-
gene1 (ROS1) as well as fusions of NTRK1-3 genes (4, 
5). Unfortunately, a large proportion of patients have 
an advanced disease, especially stage III, at diagno-
sis, thus excluding tumor resection opportunities (6, 
7). In these cases, the available tumour tissue that 
can be used for molecular testing is often limited, 
being represented by small needle core biopsies or 
cytology specimens due to the risks associated with 
biopsy procedures involving the lung. However, the 
collection of sufficient material for diagnosis, sub-
typing, and characterisation is mandatory, and when 
not available, repeating the diagnostic procedures 
can lead to delayed decision-making in creating an 
algorithm. This can lead to detrimental effects on 
the clinical outcome of the patients, especially in 
stage I, II LCs in which the molecular diagnosis is 
essential for treatment decisions. In fact, in stage 
III LC, concurrent chemoradiotherapy (CRT) associ-
ated with the immunotherapy represents the pre-
ferred treatment, being proven to increase the over-
all survival of the patients if compared to radiother-
apy alone. The rapidity of the best therapy choice is 
essential in these cases, considering that the optimal 
and personalised treatment of stage III LC patients 
is critical for achieving disease downstaging, which 
allows for subsequent surgical resection. The diag-
nostic delay can lead to a loss of the therapeutic win-
dow and subsequent opportunities for neoadjuvant 

treatment.Therefore, the availability of a diagnos-
tic technique that enables a rapid definition of the 
diagnostic workflow is essential for informed treat-
ment decision-making. Methodologies based upon 
liquid biopsy fulfil this role by allowing a wide range 
of molecular assessments through a minimally inva-
sive procedure (8, 9). Different body fluids can be 
used for liquid biopsy, including saliva, cerebrospinal 
fluid, and, more often, peripheral blood. The latter 
is collected to obtain intact circulating tumour cells 
or their products, including circulating cell-free DNA 
(cfDNA), circulating tumour DNA (ctDNA), circulating 
miRNA, exosomes, extracellular vesicles, and others 
(10, 11). These products could subsequently be used 
in diagnosis, prediction of response, monitoring of 
treatment, and assessment of mutational status 
before and during the various treatments to which 
patients are subjected. Therefore, liquid biopsy is 
highly attractive for assessing both the tumour biol-
ogy and molecular status of LC, both at single or 
multiple time points (e.g., at diagnosis or relapse). 
For instance, it is established that LC demonstrates 
genomic instability with the progressive acquisition 
of genetic alterations (including point mutations, 
chromosomal instability and epigenetic alterations), 
although at varying rates, resulting in the develop-
ment of genetic changes during the clinical evolu-
tion of the disease, as well as due to the effects of 
the different treatments. In stage III LC, these alter-
ations can contribute to clonal evolution and resis-
tance development, emphasizing the need for the 
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continuous tracking of LC molecular profile during 
treatment. The selection of resistant clones during 
therapy represents a significant mechanism for the 
development of treatment resistance and disease 
progression. Moreover, given the increasing role of 
targeted therapy, the monitoring of the molecular 
profile of the disease is of paramount importance to 
identify resistance mechanisms. Therefore, all test-
ing strategies that offer a safe modality for assess-
ing LC biology are likely to be of significant clinical 
interest. An example is provided by the observation 
that approximately 15% of LC, particularly advanced 
non-small cell lung cancers (NSCLCs), display acti-
vating EGFR mutations, which can be targeted by 
tyrosine kinase inhibitors (TKIs). Liquid biopsy can 
be used not only to determine the presence of acti-
vating EGFR mutations in treatment-naïve patients 
for whom the tissue sample is insufficient or inade-
quate for molecular analysis, but also in patients who, 
after disease progression to first- or second-gener-
ation TKIs, develop resistance mechanisms.
The identification of EGFR mutations is also crucial 
for the management of early-stage NSCLC patients 
who may be candidates for adjuvant therapy with 
the latest-generation TKI, Osimertinib. Moreover, the 
potential incorporation of liquid biopsy techniques 
into screening algorithms, both for routine popu-
lation screening and for therapy monitoring, rep-
resents an extremely attractive approach and an area 
of active investigation with promising early results.
Liquid biopsy has definite and clinically relevant 
applications for the management of LC, particu-
larly in stage III and other advanced stages, as well 
as in early-stage disease; however, its use is lim-
ited by cost, technical challenges, and availability. 
Therefore, although it is highly predictable that liq-
uid biopsy will play a significant role in diagnosis, 
response assessment, and ongoing surveillance in 
the future, the available data are still inconclusive.
Liquid biopsy techniques offer an excellent com-
bination of convenience and safety for molecular 
profiling, reducing the need for invasive and techni-
cally complicated tissue sampling. This information 
can be combined with data from imaging of tumour 
lesions to improve the diagnostic definition of the 
disease, allowing for molecular subtyping and pre-
dicting response to therapies.
Another critical challenge of the present study is 
determining the epigenetic alteration of cfDNA based 
on its methylation profile. Epigenetic modifications 
are considered a hallmark of cancer and are found 
in early stages of disease, tumour progression, and 

metastasis formation. DNA methylation is a tissue- 
and cancer-specific modification and, in contrast to 
the heterogeneity of gene mutations, appears to be 
similar in cancer cells of the same type and tissue 
origin (12, 13). Genome-wide methylation analysis 
using the bisulfite conversion method of cfDNA has 
been previously employed for cancer diagnosis (14). 
However, this method is expensive, time-consuming, 
and requires large amounts ofcfDNA. An innovative 
and highly sensitive alternative is offered by using 
cell-free methylated DNA immunoprecipitation with 
anti-5mC antibodies and subsequent high-through-
put sequencing (cfMeDIP-seq) (15) to assess the meth-
ylation profile, even with low cfDNA input. Differen-
tially methylated regions (DMRs) have been used to 
construct classifiers that can identify patients with 
several cancers (15, 16). Therefore, one of the objec-
tives of the present study will be to use cfMeDip for 
the early diagnosis, determination of minimal resi-
due disease, and histological subtyping of patients 
with LC, and to correlate these results with radio-
logical imaging.
Based on these advances, this study aims to evalu-
ate the diagnostic accuracy of chest CT in the mor-
pho-structural characterisation of stage III LC. By 
extracting radiomic capabilities related to the struc-
ture and morphology of the lesions, the observation 
aims to correlate this information with the results of 
genetic, epigenetic, and molecular analyses obtained 
through liquid biopsy.

METHODS/DESIGN
The concept of a single-site biopsy to monitor dis-
ease dynamics during therapy is practically unfea-
sible, as it is invasive and may result in an under-
estimation of heterogeneity. On the other hand, a 
liquid biopsy based on the analysis of circulating 
tumour cells or tumour macromolecular products 
reflects the mutational status of the overall disease 
sites, allowing for the identification of emerging sub-
clones responsible for treatment resistance. Addi-
tionally, radiomics has emerged as a novel field of 
research dealing with the extraction and analysis of 
specific features from diagnostic images, potentially 
reflecting the pathophysiological processes and the 
heterogeneity of tumour genetics.
The combined approach of radiomics and liquid 
biopsy has the potential to elucidate the dynamics 
of molecular lesions, thereby supporting informed 
clinical decision-making (17, 18).
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Aims and objectives
The project aims to create a structured report in CT 
with contrast media, which includes, in addition to 
the subjective evaluation of the radiologist, a quan-
titative/objective assessment of the lung tumour 
with several features that describe the texture and 
morphology of the lesion (19, 20).
Therefore, as shown in Figure 1, the project aims to 
extract the DICOM images acquired with CT with con-
trast medium, from a significant number of patients, 
with a particular focus on stage III LC, for the sub-
sequent evaluation of their accuracy in the char-
acterisation of LC malignancy. Furthermore, in the 
same patients, the molecular analysis of the genes 
involved in LC will be performed on DNA extracted 
from a peripheral blood sample (21, 22).
The correlation between radiomic characteristics, 
quantitative analysis of tumours performed by CT, 
structured lesion reports, and liquid biopsies could 
help avoid many unnecessary biopsy procedures 
(23, 24).

Study design
This section outlines the techniques and protocols 
of our experimental study, aimed at integrating sci-
entific, molecular, and imaging records to assess the 
diagnostic accuracy of CT scans and liquid biopsy 
in LC management, with a selected emphasis on 
stage III cases.
Inclusion criteria:
	- Age ≥18 years
	- Full understanding of the study and signed 

informed consent
	- Presence of a neoplasm requiring further diag-

nostic evaluation
	- Availability to undergo liquid biopsy.

Exclusion criteria:
	- Allergies to contrast media
	- Inability to maintain immobility during the exam
	- Pregnancy or breastfeeding

	- Risk factors for contrast nephropathy (GFR <60 
ml/dl)

	- Known allergy to contrast agent.

Recruitment Process
In the first year, from the first bimonthly period to 
the sixth, the two Diagnostic Imaging Units will be 
responsible for enrolling hospitalised patients who 
undergo CT-guided biopsy for suspected lung can-
cer. The CT investigation will be performed before 
histopathological sampling, to obtain information 
regarding morpho-densitometric characteristics of 
the lesion and to plan the subsequent biopsy pro-
cedure (25-28).
Prior to treatment administration and molecular 
pathology assessments, all patients provided written 
informed consent. The study was approved by the 
Ethics Committee “Comitato Etico Università degli 
Studi della Campania Luigi Vanvitelli” (approval No. 
24997/2020) on 11th November 2020.
The recruitment and collection phase of clinical 
anamnestic data will be performed in a specific 
DICOM file (structured report) and will start after 
Informed Consent has been signed by the patient. 
Informed Consent will be accurately prepared for 
this study by the PI and substitute PI.

Imaging Acquisition and Analysis
Once the CT imaging has been acquired, the DICOM 
images will be evaluated by the PI and the Deputy 
PI from the first to sixth bimonthly period of the 
first year. From the second to the sixth bimonthly 
period of the first year a quantitative analysis of the 
lung lesion will be performed with an artificial intel-
ligence system capable of identifying the tumor on 
the CT image, calculating its diameters and volume 
in a semi-automatic way.
Subsequently, the radiologists assisted by the engi-
neer of the second research unit, will export the CT 
images. This phase will take place from the third 

Table 1. Overview of Study Phases and Methodologies.

PHASE DESCRIPTION TECHNIQUES / TOOLS
Data Collection Collection of clinical data, imaging, and biopsy samples Clinical Records, CT Imaging, Liquid Biopsy

Radiomic Analysis Extraction of radiomic features from imaging data Pyradiomics, ITK-SNAP

Genetic Analysis Study of genetic mutations through liquid biopsy PCR, Sequencing

Prediction of 
Outcomes Combination of data to predict therapeutic outcomes Machine Learning Models, AUC
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to the sixth bimonthly period of the first year. The 
images exported by the individual research units will 
be archived using a ‘GDPR compliant’ Cloud system 
that will be developed ad hoc for the study.
The cloud platform comprises:
	- Storage Section: Secure archiving of DICOM files, 

structured reports, and genetic data.
	- Computing Section: An online application for struc-

tured reporting, integrating clinical and anam-
nestic information, ensuring standardized pro-
cedures and simplifying radiomics/radiogenom-
ics analysis.

Following the data extraction, during the period 
from the fifth to the fourth two-month period of 
the first year to the second year, the Department 
of Electrical Engineering and Information Technol-
ogies at the University of Federico II will carry out 
the computational analysis of the tumour volume 
to extract the radiomics features. Subsequently, 
from the sixth bimonthly period of the first year to 
the fourth bimonthly period of the second year, the 
same Department will carry out the classification 
of radiomic features with Machine Learning tech-
niques. Finally, from the sixth bimonthly period of 
the first year to the third bimonthly period of the 
second year, these data will be processed and ana-
lysed to predict tumour characteristics.
Peripheral venous blood samples can be gathered 
throughout imaging acquisition to evaluate liquid 
biopsy molecular data. Plasma samples will be stored 
in two laboratories to maintain ctDNA integrity:
	- Molecular and Precision Oncology Laboratory 

(Vanvitelli University and Biogem scarl)
	- Cytology and Predictive Molecular Pathology Lab-

oratory (Federico II University).

Furthermore, from the fifth two-month period of the 
first year to the third two-month period of the sec-
ond year, the extraction of the ctDNA and the prepa-
ration of the genetic library will be performed by 
using OncomineTM Lung ctDNA Assay (Thermofisher, 
Massachusetts, USA). Afterwards, from the first two-
month period of the second year to the fourth two-
month period of the second year, the sequencing 
by Next Generation Sequencing (NGS) technique on 
the Ion Torrent GeneStudio S5Plus system (Ther-
mofisher, Massachusetts, USA) will be run. Regard-
ing data analysis, NGS technology involves various 
processes, which are very expensive from the point 
of view of the computational resources used. Gene 
sequencing of cfDNA samples using the NGS tech-

nique will be analysed on ThermoFisher systems 
and software.
The analysis of the characteristic driver mutations of 
lung cancer, as included in the OncomineTM Lung 
ctDNA Assay, provides sequencing of 11 genes (ALK, 
BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA, 
ROS1, and TP53) and more than 150 hotspots. The 
analysis has a high specificity and sensitivity, along 
with an efficient workflow that enables the rapid gen-
eration of results. In addition to being inclusive of 
clinical-laboratory information, patient data will also 
contain information obtained from genetic analysis 
and will always be archived within the same cloud 
platform created ad hoc by the Department of Bio-
medical Engineering of Federico II.
Subsequently, from the third two-month period of 
the first year to the sixth two-month period of the 
second year, the two Research Units will undertake 
to correlate the data obtained from radiomic anal-
ysis with the data obtained from genetic analysis.
Finally, from the sixth two-month period of the first 
year to the sixth two-month period of the second 
year, the Engineering department of the second 
Unit will carry out the Radiomic analysis of the seg-
mented volume using Imaging with the aim of obtain-
ing a number of significant features that can be cor-
related with the genetic data of the liquid biopsy.

Techniques for the Analysis of Liquid Biopsy
A liquid biopsy will be performed only for patients 
who have previously undergone a CT study for diag-
nosis and staging. All patients enrolled in the study 
will undergo a peripheral venous blood sample col-
lection in two test K2 tubes.
The ctDNA will be extracted from the plasma for 
molecular analysis, which will be performed using 
NGS technology, based on Ion Torrent technol-
ogy. Unlike other fluorescence-based platforms, 
Ion Torrent uses an electrochemical approach to 
detect nucleotides, eliminating the need for opti-
cal labels and thereby increasing sequencing speed 
and accessibility. After genomic library preparation, 
DNA molecules are fragmented and ligated to oligo-
nucleotide adapters, allowing immobilization onto 
specific beads. Each bead is then placed into an oil 
droplet containing emulsion PCR (emPCR) reagents, 
ensuring that each bead carries a single amplified 
DNA molecule. After amplification, the beads are 
loaded into a semiconductor chip, with each well 
containing a single bead with multiple copies of the 
same DNA fragment. Sequencing occurs through 
the sequential introduction of nucleotides. When a 
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complementary nucleotide is incorporated by DNA 
polymerase, a proton (H+) is released, causing a pH 
shift. This change is detected by chip sensors, which 
convert the electrochemical signal into digital data.

Routine Sample Processing Strategy
Circulating free nucleic acids are purified from 1 
mL of clarified plasma. In particular, cfDNA is iso-
lated by using the Qiamp Circulating Nucleic Acid 
Kit (Qiagen) and eluted with 50µL of Nuclease-free 
Water, following manufacturer instructions. The 
extracted cfDNA is stored at -20°C. The concentra-
tion of cfDNA is evaluated using a Qubit 4 fluorom-
eter (ThermoFisher) with the Qubit 1X dsDNA High 
Sensitivity (HS) kit.
Extracted cfDNA samples are tested on Genexus 
(Thermo Fisher Scientific) system. The platform 
enables entire NGS workflows (from library prepara-
tion to data interpretation) within 24 hours. The OPA 
assay includes the most clinically relevant actionable 
genes for solid tumour patients. Firstly, samples are 
created on a dedicated server and assigned to a new 
run. Then, the Genexus platform is loaded with OPA 
primers, strip solutions, strip reagents, and supplies 
according to manufacturer instructions. A total of 
10ng is required by the OPA assay on the Genexus 
platform. Accordingly, each sample is dispensed on 
a 96-well plate, following manufacturer instructions.
Finally, nucleic acids are sequenced on a GX5™ chip 
that allows for the simultaneous processing of n = 4 
samples in a single line with an OPA assay, for a max-
imum of 4 lanes (16 samples) in a row. Data analysis 
is performed using proprietary IonTorrent Genexus 
software (6.8.2.0). Particularly, detected alterations 
are annotated by adopting Oncomine Knowledge-
base Reporter Software (Oncomine Reporter 5.0).
In addition, BAM files are also visually inspected with 
the Golden Helix Genome Browser v.2.0.7 (Bozeman, 
MT, USA) in hotspot regions in EGFR, KRAS, and BRAF 
lung cancer-addicted molecular alterations.

cfMeDIP-seq
cfMeDIP-seq is conducted following previously pub-
lished protocols. In short, cfDNA libraries are gener-
ated using the Kapa Hyper Prep Kit (Roche) accord-
ing to the manufacturer’s guidelines. After perform-
ing end-repair and A-tailing, adaptors from the NEB-
Next Multiplex Oligos for Illumina (NEB) are ligated to 
the samples, followed by purification using AMPure 
XP beads.
To achieve a final quantity of 100 ng, Lambda DNA—
comprising both methylated and unmethylated 

amplicons with varying CpG content—is added to 
the libraries. 0.3 ng of methylated and unmethylated 
Arabidopsis thaliana DNA is added for quality control 
purposes (Diagenode). One small part of the library 
is kept aside for input control (IC), and the remaining 
part was used for immunoprecipitation (IP).
MeDIP is carried out with the MagMeDIP Kit (Diag-
enode) and Antibody anti5mC* (33D3 clone) as per 
the manufacturer’s protocol. The efficiency of the 
immunoprecipitation is verified via qPCR by detect-
ing the recovery of the spiked-in Arabidopsis thali-
ana DNA (both methylated and unmethylated), fol-
lowing Diagenode’s instructions. All samples with a 
specificity of reaction are sequenced at the resolu-
tion with a mean of 54.7 million reads per sample, 
resulting in ~5.1X depth per sample.

Processing of cfMeDIP-seq data
The quality of raw reads is evaluated using FastQC 
version 0.11.9 and MultiQC version 1.11. Low-quality 
reads and adaptors are removed with Trim Galore 
version 0.6.6. The trimmed reads are aligned to hg38 
with Bowtie2 version 2.3.4.3. SAMTools version 1.9 
is used to convert the SAM alignment files to BAM 
files, sort and index reads, and remove duplicates. 
Samples with <10M mapped reads are excluded. 
Tumour fraction is estimated using IchorCNA on 
the low-pass WGS of IC samples.

Processing of cfMeDIP-seq data
The quality of raw reads is evaluated using FastQC 
version 0.11.9 (https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc) and MultiQC version 
1.11 (29). Then, low-quality reads and adaptors are 
removed with Trim Galore version 0.6.6 (https://
www.bioinformatics.babraham.ac.uk/projects/trim_
galore). The trimmed reads are aligned to hg38 with 
Bowtie2 version 2.3.4.3 (30). SAMTools version 1.9 (31) 
is used to convert the SAM alignment files to BAM 
files, sort and index reads, and remove duplicates. 
Samples with <10 M mapped reads are excluded. 
Tumour fraction is estimated using IchorCNA (20) 
on the low-pass WGS of IC samples.

Identification and annotation of differentially 
methylated regions (DMRs)
The filtered BAM files are processed using MEDIPS 
(32) to identify the Differentially Methylated Regions 
(DMRs) between LC patients with different hystotypes 
and stages. The enrichment scores relH and GoGe 
are estimated for each sample to express the grade 
of CpG enrichment in the DNA fragments compared 
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to the reference genome. The enrichment score relH 
is the ratio between the relative frequency of CpGs 
within the regions and the reference genome. The 
enrichment score GoGe is the observed/expected 
ratio of CpGs within the regions and the reference 
genome. Samples with a relH value less than 2.7 and/
or a GoGe value less than 1.75 are excluded. Then, 
the genome of each sample is binned into 300-bp 
windows, and the methylation status of each bin is 
compared between the two groups. Regions with 
an absolute value of log2 fold change (FC) greater 
than or equal to 2 and a p-value less than 0.01 are 
selected as differentially methylated. The identified 
DMRs are annotated with the annotatr (33) R pack-
age. Gene set enrichment with DAVID and gene 
ontologies with a p-value less than 0.05 is selected.

Base Calling
In base calling, nucleotide sequences are “extracted” 
from the image data generated by sequencing plat-
forms. Base-calling algorithms convert image infor-
mation into sequence data. The process also cor-
rects for artefacts such as crosstalk and phase errors. 
Crosstalk occurs due to overlapping fluorescence 
emissions of different nucleotides, while phasing is 
caused by signal dispersion and diffusion between 
cycles. Each base is assigned a quality score, called 
the “Phred quality score” (Q), which indicates the 
accuracy of base identification.

Alignment
Short DNA reads (200–8000 bp) are sequenced from 
either one or both ends of DNA fragments (single-end 
or paired-end reads), with typical lengths around 400 
bp on platforms like 454. Alignment aims to locate 
these reads on a reference sequence, but challenges 
arise in regions that diverge significantly from the 
reference. Using longer or paired-end reads, which 
sequence DNA in both 5’-3’ and 3’-5’ directions, can 
improve alignment accuracy. A critical factor for suc-
cessful assembly is coverage, defined as the num-
ber of times a sequence aligns with the reference, 
ensuring reliability and completeness in the recon-
structed sequence.

Calibration of Quality Scores
Phred quality scores derived from alignment algo-
rithms do not always accurately reflect real errors in 
base calling. Therefore, recalibration is performed, 
considering factors such as raw quality scores, the 
relative position of the base within the read, and 
the dinucleotide context.

Clinical Applications
The clinical applications of liquid biopsy depend on 
the approach used to study circulating tumour cells 
or ctDNA. A quantitative approach provides prog-
nostic information, while a qualitative approach 
enables the analysis of predictive mutations, mon-
itoring of clonal evolution, and adjustment of ther-
apeutic strategies. ctDNA, released by apoptotic or 
necrotic tumour cells, provides DNA information 
from both primary lesions and metastases.

Imaging Techniques
CT will be performed using multidetector equipment 
(GE Revolution GSI 128 MDTC).
Clinical and radiological data will be collected to cor-
relate with molecular and genomic data.

Radiologists’ Responsibilities
Radiologists will be required to:
	- Collect clinical information using a structured 

report (see sheet).
	- Obtain informed consent from patients.

Extraction of Quantitative Features for 
Radiomics

Textural Features
Plot features will be obtained from manually seg-
mented ROIs on CT images. They will include first-or-
der features (mean, mode, median, standard devia-
tion (std), median absolute deviation (MAD), range, 
kurtosis, skewness, and interquartile range (IQR) 
and second-order characteristics. For the latter, 
bandpass, wavelet, isotropic resampling, discre-
tisation length corrections and different quanti-
sation tools will be implemented. The first three 
sets are based on the grey-level co-occurrence 
matrix (GLCM), the grey-level run-length matrix 
(RLM), and the size zone matrix (SZM), all of which 
belong to the family of statistical matrices. Once 
these matrices have been constructed, it is possi-
ble to derive texture features (such as Haralick fea-
tures and moments).
To improve robustness, advanced techniques like 
bandpass filtering, wavelet transformations, isotro-
pic resampling, and quantisation corrections will 
be applied. Multi-grey-level SZM variants will also 
be utilised to compute texture features across var-
ious quantisation levels, combining the results using 
weighted averages to enhance sensitivity to subtle 
texture variations.
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The formula for calculating the multi-gray-level SZM 
is as follows:

MSZMff (s,g) = ∑wkkSZMff
NNk(s,g)

The integration of these features enables detailed 
and multi-scale texture characterisation, optimising 
the ability to differentiate and classify lung lesions 
in CT imaging, even across diverse morphological 
and pathological presentations.

Morphological Features
A set of morphological features will be considered, 
including mean radial length, radial length entropy, 
irregularity, diameter, circularity, compactness, 
smoothness, roughness, rectangularity, convexity, 
eccentricity, and eulogy.

Classification Methods
Classification involves assigning an individual (such 
as a lesion or patient) to a specific class based on 
extracted features. This is done using a feature vec-
tor x = [x(1),x(2), … ,x(N)], where the classifier assigns 
the individual to one of K possible classes.
The process includes several steps:
	- Choosing the Classification Criterion:

This decision (linear or nonlinear) depends on the 
problem and the available data.

	- Training:
The classifier is trained on a data subset, typi-
cally using supervised learning with cross-vali-
dation techniques.

	- Validation:
The classifier’s performance is tested on a sepa-
rate dataset to evaluate its generalisation ability.

The performance of a classifier depends on the com-
bination of features, algorithms, and training meth-
ods used. In recent years, deep learning techniques 
have gained popularity for their ability to identify 
critical features from large datasets automatically.
eeThe following sections examine some of the most 
popular classification techniques and methods. In 
this study, all currently available techniques will be 
applied with the aim of finding the best combina-
tion in terms of classification performance.

Classifier Types
Classification techniques can be essentially divided 
into linear and nonlinear. Linear techniques adopt a 
linear combination (sum) of features to try to classify 
the individual. Such techniques (e.g., Linear Discrim-
inant Analysis, LDA) are helpful when features are 

chosen such that the problem is linearly separable.
More often, the problem is not linearly separable, 
and therefore nonlinear techniques (such as neural 
networks, k-nearest-neighbours, and support vector 
machines) are more useful. Trees are a special type 
of nonlinear classifier that is based on successive 
dichotomous processes. At each step, the algorithm 
creates a binary separation, and each leaf is further 
divided into two at the next step. This type of algo-
rithm is generally chosen for its ‘human’ comprehen-
sibility. Dichotomies are binary decisions of the yes/
no type on individual features, and thus their inter-
pretation is transparent. In contrast, classification 
rules generated by linear or nonlinear algorithms 
are generally not understandable.

Cross-Validation
Cross-validation is an essential aspect of classifier 
training and aims to reduce possible overfitting, i.e., 
the tendency of training to select parameters that 
make the classifier very good at classifying individ-
uals used as a training set, while the ability to gen-
eralise, i.e., classify individuals not belonging to the 
training set, is limited. This issue is related to the 
fact that, often, as in the present case, it is not pos-
sible to examine a significant sub-population that is 
representative of the entire population (all possible 
breast cancers, in this case). Therefore, it is neces-
sary for the classifier to be able to have reasonable 
performance on the entire population.

Evaluation Metrics
Performance metrics for classifiers will include stan-
dard measures like True Positives, False Positives, 
ROC curves, and confusion matrices. For binary clas-
sifiers, the confusion matrix provides insight into 
misclassifications; for multi-class classifiers, more 
complex metrics are used.

Implementation in the Present Protocol
All pre-processing, DICOM image handling, and fea-
ture extraction will be conducted using Matlab (The 
MathWorks Inc., Natick, MA) or R (R Core Team, 
2018). Matlab is widely used for scientific data pro-
cessing and classification. At the same time, R is an 
open-source statistical analysis tool that has grown 
to support advanced techniques in machine learn-
ing and radiomics.

Statistical Analysis
The characteristics of the study population and other 
relevant variables will be described using the appro-

8

k = 1
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priate descriptive statistics for both continuous and 
categorical data.
Data will be presented with absolute frequencies 
and percentages, reporting the respective confi-
dence limits. The mean and standard deviation will 
be reported for discrete parameters, following a 
Gaussian curve. Medians and interquartile ranges 
will be reported in cases where parameters are not 
distributed according to a Gaussian curve. Paramet-
ric and nonparametric tests for paired and unpaired 
data will be used, regardless of whether the data 
distribution is Gaussian or non-Gaussian, to detect 
statistically significant differences between groups. 
For continuous variables, the difference between 
median values for different groups will be calcu-
lated and tested using a two-sided Student t-test 
(if the differences are normally distributed) or the 
Mann-Whitney test (if the differences are gener-
ally not distributed. Assessment of inter-observer 
variability will be performed by calculating Cohen’s 
Kappa index. Mixed-effects regression models will 
adjust for covariates in longitudinal data. Multivari-
ate analysis, including linear classifiers, support vec-
tor machines, and decision trees, will explore fea-
ture combinations to optimise classification accu-
racy of lung lesions.
A p-value <0.05 will indicate statistical significance, 
with Bonferroni correction for multiple comparisons. 
Analyses will use Matlab Statistics Toolbox and R.

DISCUSSION
Precision medicine enables the targeted treatment 
of LC, including stage III, by applying multimodal 
omic strategies tailored to individual groups based 
on their genetics (34, 36).
Radiogenomics aims to correlate imaging pheno-
types with gene and epigenetic modifications. Radio-
mics has recently emerged as a promising tool 
for discovering new imaging biomarkers. It can be 
applied to any field of diagnostic imaging and is 
used in various clinical settings. Radiogenomics is 
a specialised evolution of oncology radiomics that 
utilises imaging capabilities to non-invasively iden-
tify or predict tumour-specific genomic alterations 
(37-38).
The biopsy of the suspected cancer is today the gold 
standard for the characterisation of LC. However, it 
is expensive, invasive and evaluates only the sam-
pled section of a heterogeneous tumour. The appli-
cative and ambitious goal of the present study is 

to develop a new protocol and mathematical algo-
rithm based on the imaging of the entire tumour or 
of a multifocal tumor load in a single patient, with 
the possibility of providing a non-invasive diagnosis 
correlating also the data derived from liquid biopsy 
on the gene mutations and epigenetic changes of 
the tumour.
Currently, there is no universal image acquisition 
protocol and no structured reporting standards (39) 
The method and application of the structured report 
could be adopted as a reporting method not only in 
LC but more generally in all cancers. The algorithm 
derived from the present study should be validated 
by scientific agencies and societies to transfer the 
obtained diagnostic procedures into the clinical set-
ting and real-world practice.
Suppose the goals of the present project are suc-
cessful. In that case, they will result in a significant 
reduction of health system expenses, allowing for 
highly personalised LC treatment and enabling ear-
ly-stage diagnosis, thereby avoiding unnecessary 
treatments.
All this would bring enormous benefits to patients 
in terms of quality of life and social and productive 
contribution.
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INTRODUCTION
The presence of metastatic dissemination in the first 
draining lymph node of a melanoma is an essen-
tial element for correct staging according to inter-
national guidelines (1). For decades, the most com-
mon initial route for metastatic spread has been 
recognized as the lymphatic drainage of the pri-
mary lesion. Over the last few decades, studies on 
surgical strategy and the revolutionary therapeutic 

introductions of immunotherapy and targeted ther-
apy have reshaped the role of lymph node dissec-
tion and transformed survival rates in both adju-
vant and metastatic settings (1).
Results from the Multicenter Selective Lymphadenec-
tomy Trial II (2) have clearly demonstrated that there 
is no survival advantage from complete lymph node 
dissection when compared to ultrasound surveillance 
of the locoregional district. The concept of the Sin-
gle Lymph Node Biopsy (SLNB) was developed for 

155

OPINION PAPER

NEW CLINICAL NEEDS IN MELANOMA 
STAGING: IS THERE STILL ROOM FOR 
SINGLE LYMPH NODE EXCISION?

Francesco Caraglia, Teresa Troiani, Alfonso Esposito, Miriam Forte, Maria Cristina 
Giugliano, Silvana Cozzolino, Antonino Colloca, Eleonora Cioli, Vincenzo De Falco *

Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
* Correspondence to:  vincenzodefalc@gmail.com

ABSTRACT: the presence of metastatic cells in the first draining lymph node is crucial for staging melanoma, traditionally treated 
by the removal of the regional nodal basin until few years ago. The results of some prospective studies of surgical strategy and 
the introduction of immunotherapy and targeted therapy has significantly changed clinical practice, reshaping the role of lymph 
node dissection. Single Lymph Node Biopsy (SLNB) is now used for accurate staging with less invasive surgery, aiding in identifying 
patients who may benefit from adjuvant therapy. The aim of this review is to enlighten the needs perceived during everyday clinical 
practice. Prognostication in melanoma is still a challenge, with serum lactate dehydrogenase (LDH) as the only biomarker. Elevated 
LDH levels correlate with worse outcomes in advanced melanoma.SLNB time and curative role are debated, with studies suggesting 
that the timing of SLNB may influence outcomes and that SLNB has limitations in predicting mortality, especially in different age 
groups. The use of precision medicine tools like circulating tumour DNA (ctDNA) tests and the emerging role of neoadjuvant immune 
checkpoint inhibitors (ICI) are improving outcomes.
While SLNB still remains fundamental, further research is needed to identify which patients’ subgroups benefit the most from it.

DOI: 10.48286/aro.2025.114

IMPACT STATEMENT: This article challenges conventional 
melanoma staging by reintroducing single lymph node excision 
as a selective tool in modern practice. It proposes refined clini-
cal criteria for its use, aiming to guide oncologists toward more 
personalized and pragmatic staging decisions in the era of pre-
cision oncology.

Key words: melanoma; SLNB; surgery; biomarkers; clinical needs.

Received: May 21, 2025/Accepted: Sept 12, 2025

Published: Oct 14, 2025 

mailto:vincenzodefalc@gmail.com


Vol. 5(3), 155-161, 2025

156

melanoma by D.L. Morton in the late 1980s, based 
on earlier lymphoscintigraphy studies.
The benefits of this procedure include more accu-
rate staging of the regional node, combined with less 
invasive and morbid surgery. According to current 
guidelines, SLNB can help identify patients with at 
least pT1b melanoma who may benefit from adju-
vant therapy. In histopathological procedures, SLNB 
positivity rates vary, with a reported false-negative 
rate as high as 10% (3).
Following the excellent results from the Checkmate 
238, Keynote-054, and COMBI-AD trials in 2018, adju-
vant treatment has become standard clinical prac-
tice for patients with stage III melanoma (4, 5). Fur-
thermore, Pembrolizumab has demonstrated signif-
icant improvements in both Relapse-Free Survival 
(RFS) and Distant Metastasis-Free Survival (DMFS) in 
pivotal adjuvant trials for stage IIB/C disease, mak-
ing these stages eligible for adjuvant therapy (6). 
New therapeutic options are emerging following 
the excellent results from the phase 3 NADINA trial 
(7) and the randomized phase 2 SWOG S1801 trial. 
These trials are clearing a path for the implemen-
tation of neoadjuvant (Nivolumab + Ipilimumab) or 
perioperative (Pembrolizumab) regimens for stage III 
melanoma patients with clinical evidence of lymph 
node dissemination or satellitosis.
This review aims to highlight the needs perceived 
in everyday clinical practice.

CLINICAL PATHOLOGICAL 
FEATURES, BIOMARKERS, AND 
GENE EXPRESSION PROFILING
Do we have reliable biomarkers for melanoma prog-
nostication? Currently, lactate dehydrogenase (LDH) 
is the only biomarker consistently associated with 
prognosis in melanoma (8). Several studies have 
suggested that a baseline elevation of serum LDH 
(sLDH) is associated with poorer treatment outcomes 
in patients with stage IV metastatic melanoma (24). 
In a study by Fischer et al. (9), molecular and immu-
nological characteristics were not significantly asso-
ciated with sLDH status. It is possible that sLDH is 
associated with worse outcomes primarily as a sur-
rogate for tumour burden, as a strong correlation 
was found with the number of metastatic sites (9). 
However, some multivariate analyses have provided 
evidence that sLDH is associated with poorer out-
comes independent of tumour burden (9).
Dutriaux et al. (10) found a similar correlation 
between higher levels of sLDH and decreased Pro-
gression-Free Survival (PFS) and Overall Survival (OS) 
in patients with advanced BRAFV600-mutant mela-
noma and brain metastases who were treated with 
targeted therapy. Additionally, sLDH levels may dif-
fer among patients with stage IV metastatic mela-
noma due to variations in the extent of organ dam-
age and the influence of comorbidities (8, 9).

Figure 1. Melanoma staging and treatment according to anatomopathological T stage features.
The absence of clinical metastasis determines a pivotal juncture in the therapeutic management of the patients, to date pT1a patients are 
candidate to periodic follow-up, on the other hand pT1b-pT3a and pT3b-pT4b patients are multidisciplinary discussed to receive sentinel 
lymph node biopsy to define a clinical IIA, resulting in clinical follow-up, or IIB-IIID stage, leading to adjuvant therapy. In the recent future, 
it is hypothesized a different management for pT3b-pT4b patients based on the CPGEP, GEP and IHC risk scores (dashed square), which 
could allow to avoid SNLB and to an upfront adjuvant therapy. Immunohistochemistry (IHC), clinicopathological and gene expression profile 
(CPGEP) gene expression profile (GEP), sentinel lymph node biopsy (SNLB).
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Some studies have also revealed that an Interfer-
on-gamma (IFN-γ) signature can be useful in dis-
tinguishing patients at high risk of recurrence from 
those at low risk (11). Immunotherapies engage the 
immune system to target and eliminate cancer cells 
and can stabilize malignancies until immune escape 
mechanisms lead to progression. A long-term fol-
low-up of the KEYNOTE-001 trial revealed that 12% of 
the 105 melanoma patients who were initially classi-
fied as having a complete response after anti-PD-1 
treatment eventually had detectable disease in their 
serum, suggesting their tumours were held in a state 
of clinically undetectable equilibrium (11).
IFN-γ signalling is critical for the early response to 
checkpoint blockade, and inactivating IFN-γ sens-
ing in tumour cells promotes resistance to immu-
notherapy (11). It is hypothesized that IFN-γ inhibits 
tumour growth and promotes CD8+ T cell-directed 
responses through improved antigen presenta-
tion. However, the long-term role of IFN-γ remains 
unknown because biopsies cannot be obtained 
when patients have clinically undetectable disease 
(11). Moreover, IFN-γ has negative feedback mech-
anisms that can, in some cases, promote tumour 
growth (11).
In a preclinical study, the viral expression of IL-12, 
a cytokine able to stimulate IFN-γ production and 
enhance the growth and cytotoxicity of natural killer 
(NK), CD8, and CD4 T cells, was found to “freeze” mel-
anoma-bearing mice, with mice lasting over 120 days, 
neither clearing nor succumbing to their tumours 
(11). Consistent with the importance of IFN-γ in that 
model of equilibrium, transcriptomic data from The 
Cancer Genome Atlas (TCGA) were analysed, and a 
positive association was found between IL-12, IFN-γ 
-stimulated gene expression, and increased survival 
in melanoma patients. It was observed that, indeed, 
melanoma patients with higher expression of IFN-γ 
response genes fared better than patients with 
lower expression (11). In a study from Versluis et al. 
the role of IFN- γ signature was compared between 
an observation cohort and an adjuvant intention 
cohort. In both arms, better RFS were achieved in 
patients with high IFN-γ score (12). Another study 
from Long et al. (13) evaluated molecular and bio-
chemical characteristics of patients who underwent 
adjuvant treatment with Nivolumab vs placebo in 
IIB/IIC stage melanoma, finding that better RFS was 
linked to higher IFN-γ signature, tumour mutational 
burden (TMB), and percentage of CD8+ T cells, and 
lower C reactive protein (CRP) levels. Despite what 
had been found in other cited studies, in this work, 

molecular biomarkers were not associated with RFS 
in patients who underwent a placebo treatment. In 
a study in which a biomarker-based signature was 
retrospectively analysed in patient treated with dab-
rafenib plus trametinib versus placebo in the COM-
BI-AD trial (14), a correlation between higher IFN-γ 
gene expression signature and prolonged RFS was 
found in both groups. Patients with low TMB had 
a substantial long-term RFS benefit from targeted 
therapy. Conversely, patients with high TMB seem 
to have a less pronounced benefit, especially if they 
had an IFN-γ signature lower than the median (14).

SURGICAL TIMING OF SLNB AND 
ITS CURATIVE ROLE
Given that there are no consensus guidelines on the 
optimal timing for performing SLNB in high-risk mel-
anoma patients (Figure 1), a study involving 53,355 
patients who underwent the procedure found that 
surgery was performed a median of 5-7 weeks after 
diagnosis (15). The study also revealed that for each 
week of delay, the probability of finding a positive 
node increased by 2.4%. Furthermore, patients with 
a higher Breslow depth index showed a significant 
increase in nodal positivity with increased time to 
surgery, although no significant trend was observed 
in T4 patients (15).
A study by Dixon et al. sought to evaluate the effi-
cacy of SLNB in predicting mortality in melanoma 
patients at different ages, using data from the Tub-
ingen University Database for patients who under-
went SLNB between January 2000 and December 
2014. The results showed that predicted SLNB-pos-
itive rates were significantly higher than mortality 
rates for 20-year-old patients, while the opposite was 
true for 80-year-old patients. This study highlights 
the limitations of SLNB in predicting mortality, sug-
gesting it may lead to the overtreatment of younger 
patients and undertreatment of older patients (15).
In a multicentre international study by Moncrieff 
et al. (16), patients with pT1b-pT2a melanoma were 
analysed. This group has a reportedly low risk of a 
positive SLNB (10%), and even when a positive node 
is found, the 5-year survival rate for stage IIIA mel-
anoma is 90% (16). The study, which included 3,610 
patients with early primary cutaneous melanomas, 
found that only 11.4% had a positive SLNB, and the 
only clinical and histopathological characteristic 
associated with SLNB positivity was a mitotic rate 
greater than 1/mm². The authors concluded by sug-
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gesting a re-evaluation of the indication for SLNB in 
early T-stage melanoma (16).
Another study from Kakish et al. tried to investigate 
the association of SLNB and survival in the elderly. 
What emerged from this retrospective study is that 
SLNB still adds prognostic information for elderly 
patients with melanoma and should not be elimi-
nated in this population unless justified by poor per-
formance status or patient preference. In the ana-
lysed cohort the decreasing in SLNB performance 
could correlate with a lack in the therapeutic offer 
for elderly melanoma patients (17). By quantify-
ing the prognostic role of SLNB (18), Varey and col-
leagues found that the risk of regional node field 
relapse with SLNB plus adjuvant IO for T3b and T4 
is around 9 vs 27% in all cases in which patients did 

not undergo surgery. Similarly, the node field recur-
rence rate with SLNB alone is around 14% compared 
to around 40% in patients in which both IO and sur-
gery were not performed. Thus, in this setting of 
patients, SLNB should always be performed, improv-
ing the locoregional control of disease.
In Keynote 716 there was the possibility to undergo 
adjuvant therapy in stage IIB-IIC patients. This meant 
that even without nodal involvement, patients with 
melanomas characterized by a bad pathological T 
stage had the chance to lower the possibilities of 
recurrence (19).
This can lead to arguing the role of SLNB if all patients 
with a T stage between pT3b and pT4b, independently 
if with or without lymph nodal dissemination, will 
be recommended to undergo adjuvant treatment.

Figure 2. Timeline of Events in clinical practice and in our proposed schedule.
In high risk II-III stage MM patients, assessed via multidisciplinary discussion according to CP-GEP characteristics of primary excised lesion, 
we propose a different schedule of events compared to the Standard of Care. These patients should cut all the time and costs linked to 
radicalization, SLNB and radiological restaging, harbouring to an upfront adjuvant treatment.
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Moreover, there is the necessity of underlining the 
role of lymphatic drainage pattern that can vary 
between patients, leading us to a possible false neg-
ative SLNB, as enlightened in a study from Cirocchi 
et al. (20), in which there was an important hetero-
geneity in the localization of the SLNB, in particular 
in the regions of posterior torso.

REAL-WORLD CLINICAL 
CHALLENGES
Therefore, the central question remains: to biopsy 
or not to biopsy? As the studies cited above demon-
strate, the exact characteristics of the population 
that requires this locoregional treatment are not 
yet fully known. In the future, we will not blindly 
select all patients based on the characteristics men-
tioned in the guidelines. Instead, the focus should 
be on the characteristics appropriate for the indi-
vidual patient, which will provide clearer informa-
tion about the likelihood of locoregional or distant 
metastasis during active oncologic surveillance over 
5 to 10 years.
The emerging role of precision medicine has led to 
studies investigating the use of personalized tests 
such as Signatera (21). This involves whole-exome 
sequencing of both tissue and peripheral blood to 
target patient-specific single nucleotide variants 
(SNVs), which can then be used to track circulating 
tumour DNA (ctDNA) in plasma (21). This tool shows 
promise in identifying high-risk primary melanoma 
patients under surveillance after resection to detect 
disease recurrence (21). Of course, other important 
data, such as the patient’s working conditions, med-
ical history, and clinicopathologic features like the 
Breslow index, must not be overlooked. All of these 
features are incorporated into predictive algorithms, 
such as the CP-GEP test Merlin or the GEP test Mela-
Genix, which will soon help us better identify the 
high-risk population for recurrence that should be 
selected for surgical intervention (21).
Another issue to consider is the integration of neoad-
juvant or perioperative immune checkpoint inhibitors 
ICI treatments, as seen in the NADINA trial (7). Neoad-
juvant ICIs have been shown to provide superior out-
comes compared to approved adjuvant treatments, 
with a 2-year RFS of around 70-80% after two cycles 
of neoadjuvant Ipilimumab plus Nivolumab followed 
by surgery. In these trials, only patients who were 
non-responders or had a partial response received 
adjuvant treatment (7). When upfront systemic ther-

apy leads to resectability, trials for advanced unre-
sectable melanoma demonstrate better survival 
compared to ultimate systemic treatment (1). There-
fore, ICIs for preoperative melanoma treatment have 
the potential to enhance patient outcomes and are 
likely to reshape the principles of treatment for both 
advanced and localized melanoma.

CONCLUSIONS
Currently, SLNB remains a crucial procedure for 
identifying individuals who can benefit from adju-
vant therapy by providing precise staging with less 
invasive surgery. In this work, we have shed light on 
the clinical needs encountered in everyday practice. 
With LDH as the only established biomarker, mel-
anoma prognosis remains difficult to assess. The 
curative role of SLNB must be re-evaluated. Even 
with potentially perfect timing, the inconsistency in 
predicting the usefulness of single lymph node exci-
sion is becoming evident, and it can also be seen as 
a hurdle between the patient and the start of adju-
vant therapy. The application of precision medicine 
technologies, such as ctDNA assays, CP-GEP assess-
ment, and the emerging role of neoadjuvant ICIs) is 
poised to redefine clinical node management.
What emerges from this work is the urgent need 
to find a new role for node sampling. Patients who 
would undergo adjuvant treatment with or without 
SLNB should be assessed with the aforementioned 
precision medicine tools in multidisciplinary discus-
sions at high-volume centres, ensuring the best clin-
ical practice for every single patient. In this way (Fig-
ure 2), we could reduce costs and time for national 
healthcare systems, avoiding surgical overtreatment 
for patients who would be treated regardless, and 
in other cases, avoiding unnecessary medications 
for patients with a low risk of recurrence for whom 
SLNB alone might be sufficient.
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