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BACKGROUND
Lung cancer (LC) represents a leading cause of death 
worldwide, contributing to a high percentage of can-
cer-related deaths in both sexes (1). However, over 
the last decade, novel targeted therapies and immu-

notherapies have been developed due to the discov-
ery of different mutations and aberrations in driver 
oncogenes (2, 3). Based on this, molecular testing 
and clinical biomarkers are now routinely used in 
clinical practice for the management of advanced 
LC, including the search for activating mutations 
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ABSTRACT: in recent years, imaging techniques have been successfully used to deliver diagnostic biomarkers with even greater 
accuracy. In particular, radiomic analysis methods (application of artificial intelligence on radiological images), which describe a 
segmented tumor region, using various quantitative characteristics derived from radiological images, have shown great potential 
in the identification, characterisation/classification of different types of cancer and in evaluating the response to radiotherapy and 
chemotherapy. Liquid biopsy is used for both early screening of malignancy and diagnosing minimal residual disease. It is also 
performed to assess and monitor the response to pharmacological treatments for a personalised therapeutic strategy. The analysis 
of morphostructural data obtained by imaging, correlated with the genetic/molecular results of liquid biopsy, could provide useful 
predictive factors for early diagnosis and predicting the response to anti-cancer drugs. The study aims to design and develop a 
report structured in CT with contrast media, which includes, in addition to the subjective evaluation of the radiologist, a quantitative/
objective assessment of lung cancer (LC) with features that describe the texture and morphology of the lesion. Therefore, we present 
a workflow aimed at extracting the DICOM images acquired with CT using contrast medium from a significant number of patients, 
and to evaluate their accuracy in characterising the LC lesions. Furthermore, these data will be correlated to gene mutations and 
epigenetic changes (DNA methylation) evaluated in circulating tumour DNA derived from peripheral blood with a liquid biopsy 
approach. The correlation between radiomic characteristics, quantitative analysis of tumours performed by CT, structured lesion 
reports, and liquid biopsies could help avoid many unnecessary biopsy procedures and enable personalised treatment of LC patients.
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Figure 1. Workflow of the LIDIA project, from patient enrollment to data analysis, AI modelling, clinical validation, and personalized treatment.

of epidermal growth factor receptor (EGFR), BRAF, 
HER2, MET, ERBB2 and KRAS, rearrangements of ana-
plastic lymphoma kinase (ALK) and ROS proto-onco-
gene1 (ROS1) as well as fusions of NTRK1-3 genes (4, 
5). Unfortunately, a large proportion of patients have 
an advanced disease, especially stage III, at diagno-
sis, thus excluding tumor resection opportunities (6, 
7). In these cases, the available tumour tissue that 
can be used for molecular testing is often limited, 
being represented by small needle core biopsies or 
cytology specimens due to the risks associated with 
biopsy procedures involving the lung. However, the 
collection of sufficient material for diagnosis, sub-
typing, and characterisation is mandatory, and when 
not available, repeating the diagnostic procedures 
can lead to delayed decision-making in creating an 
algorithm. This can lead to detrimental effects on 
the clinical outcome of the patients, especially in 
stage I, II LCs in which the molecular diagnosis is 
essential for treatment decisions. In fact, in stage 
III LC, concurrent chemoradiotherapy (CRT) associ-
ated with the immunotherapy represents the pre-
ferred treatment, being proven to increase the over-
all survival of the patients if compared to radiother-
apy alone. The rapidity of the best therapy choice is 
essential in these cases, considering that the optimal 
and personalised treatment of stage III LC patients 
is critical for achieving disease downstaging, which 
allows for subsequent surgical resection. The diag-
nostic delay can lead to a loss of the therapeutic win-
dow and subsequent opportunities for neoadjuvant 

treatment.Therefore, the availability of a diagnos-
tic technique that enables a rapid definition of the 
diagnostic workflow is essential for informed treat-
ment decision-making. Methodologies based upon 
liquid biopsy fulfil this role by allowing a wide range 
of molecular assessments through a minimally inva-
sive procedure (8, 9). Different body fluids can be 
used for liquid biopsy, including saliva, cerebrospinal 
fluid, and, more often, peripheral blood. The latter 
is collected to obtain intact circulating tumour cells 
or their products, including circulating cell-free DNA 
(cfDNA), circulating tumour DNA (ctDNA), circulating 
miRNA, exosomes, extracellular vesicles, and others 
(10, 11). These products could subsequently be used 
in diagnosis, prediction of response, monitoring of 
treatment, and assessment of mutational status 
before and during the various treatments to which 
patients are subjected. Therefore, liquid biopsy is 
highly attractive for assessing both the tumour biol-
ogy and molecular status of LC, both at single or 
multiple time points (e.g., at diagnosis or relapse). 
For instance, it is established that LC demonstrates 
genomic instability with the progressive acquisition 
of genetic alterations (including point mutations, 
chromosomal instability and epigenetic alterations), 
although at varying rates, resulting in the develop-
ment of genetic changes during the clinical evolu-
tion of the disease, as well as due to the effects of 
the different treatments. In stage III LC, these alter-
ations can contribute to clonal evolution and resis-
tance development, emphasizing the need for the 
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continuous tracking of LC molecular profile during 
treatment. The selection of resistant clones during 
therapy represents a significant mechanism for the 
development of treatment resistance and disease 
progression. Moreover, given the increasing role of 
targeted therapy, the monitoring of the molecular 
profile of the disease is of paramount importance to 
identify resistance mechanisms. Therefore, all test-
ing strategies that offer a safe modality for assess-
ing LC biology are likely to be of significant clinical 
interest. An example is provided by the observation 
that approximately 15% of LC, particularly advanced 
non-small cell lung cancers (NSCLCs), display acti-
vating EGFR mutations, which can be targeted by 
tyrosine kinase inhibitors (TKIs). Liquid biopsy can 
be used not only to determine the presence of acti-
vating EGFR mutations in treatment-naïve patients 
for whom the tissue sample is insufficient or inade-
quate for molecular analysis, but also in patients who, 
after disease progression to first- or second-gener-
ation TKIs, develop resistance mechanisms.
The identification of EGFR mutations is also crucial 
for the management of early-stage NSCLC patients 
who may be candidates for adjuvant therapy with 
the latest-generation TKI, Osimertinib. Moreover, the 
potential incorporation of liquid biopsy techniques 
into screening algorithms, both for routine popu-
lation screening and for therapy monitoring, rep-
resents an extremely attractive approach and an area 
of active investigation with promising early results.
Liquid biopsy has definite and clinically relevant 
applications for the management of LC, particu-
larly in stage III and other advanced stages, as well 
as in early-stage disease; however, its use is lim-
ited by cost, technical challenges, and availability. 
Therefore, although it is highly predictable that liq-
uid biopsy will play a significant role in diagnosis, 
response assessment, and ongoing surveillance in 
the future, the available data are still inconclusive.
Liquid biopsy techniques offer an excellent com-
bination of convenience and safety for molecular 
profiling, reducing the need for invasive and techni-
cally complicated tissue sampling. This information 
can be combined with data from imaging of tumour 
lesions to improve the diagnostic definition of the 
disease, allowing for molecular subtyping and pre-
dicting response to therapies.
Another critical challenge of the present study is 
determining the epigenetic alteration of cfDNA based 
on its methylation profile. Epigenetic modifications 
are considered a hallmark of cancer and are found 
in early stages of disease, tumour progression, and 

metastasis formation. DNA methylation is a tissue- 
and cancer-specific modification and, in contrast to 
the heterogeneity of gene mutations, appears to be 
similar in cancer cells of the same type and tissue 
origin (12, 13). Genome-wide methylation analysis 
using the bisulfite conversion method of cfDNA has 
been previously employed for cancer diagnosis (14). 
However, this method is expensive, time-consuming, 
and requires large amounts ofcfDNA. An innovative 
and highly sensitive alternative is offered by using 
cell-free methylated DNA immunoprecipitation with 
anti-5mC antibodies and subsequent high-through-
put sequencing (cfMeDIP-seq) (15) to assess the meth-
ylation profile, even with low cfDNA input. Differen-
tially methylated regions (DMRs) have been used to 
construct classifiers that can identify patients with 
several cancers (15, 16). Therefore, one of the objec-
tives of the present study will be to use cfMeDip for 
the early diagnosis, determination of minimal resi-
due disease, and histological subtyping of patients 
with LC, and to correlate these results with radio-
logical imaging.
Based on these advances, this study aims to evalu-
ate the diagnostic accuracy of chest CT in the mor-
pho-structural characterisation of stage III LC. By 
extracting radiomic capabilities related to the struc-
ture and morphology of the lesions, the observation 
aims to correlate this information with the results of 
genetic, epigenetic, and molecular analyses obtained 
through liquid biopsy.

METHODS/DESIGN
The concept of a single-site biopsy to monitor dis-
ease dynamics during therapy is practically unfea-
sible, as it is invasive and may result in an under-
estimation of heterogeneity. On the other hand, a 
liquid biopsy based on the analysis of circulating 
tumour cells or tumour macromolecular products 
reflects the mutational status of the overall disease 
sites, allowing for the identification of emerging sub-
clones responsible for treatment resistance. Addi-
tionally, radiomics has emerged as a novel field of 
research dealing with the extraction and analysis of 
specific features from diagnostic images, potentially 
reflecting the pathophysiological processes and the 
heterogeneity of tumour genetics.
The combined approach of radiomics and liquid 
biopsy has the potential to elucidate the dynamics 
of molecular lesions, thereby supporting informed 
clinical decision-making (17, 18).
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Aims and objectives
The project aims to create a structured report in CT 
with contrast media, which includes, in addition to 
the subjective evaluation of the radiologist, a quan-
titative/objective assessment of the lung tumour 
with several features that describe the texture and 
morphology of the lesion (19, 20).
Therefore, as shown in Figure 1, the project aims to 
extract the DICOM images acquired with CT with con-
trast medium, from a significant number of patients, 
with a particular focus on stage III LC, for the sub-
sequent evaluation of their accuracy in the char-
acterisation of LC malignancy. Furthermore, in the 
same patients, the molecular analysis of the genes 
involved in LC will be performed on DNA extracted 
from a peripheral blood sample (21, 22).
The correlation between radiomic characteristics, 
quantitative analysis of tumours performed by CT, 
structured lesion reports, and liquid biopsies could 
help avoid many unnecessary biopsy procedures 
(23, 24).

Study design
This section outlines the techniques and protocols 
of our experimental study, aimed at integrating sci-
entific, molecular, and imaging records to assess the 
diagnostic accuracy of CT scans and liquid biopsy 
in LC management, with a selected emphasis on 
stage III cases.
Inclusion criteria:
	- Age ≥18 years
	- Full understanding of the study and signed 

informed consent
	- Presence of a neoplasm requiring further diag-

nostic evaluation
	- Availability to undergo liquid biopsy.

Exclusion criteria:
	- Allergies to contrast media
	- Inability to maintain immobility during the exam
	- Pregnancy or breastfeeding

	- Risk factors for contrast nephropathy (GFR <60 
ml/dl)

	- Known allergy to contrast agent.

Recruitment Process
In the first year, from the first bimonthly period to 
the sixth, the two Diagnostic Imaging Units will be 
responsible for enrolling hospitalised patients who 
undergo CT-guided biopsy for suspected lung can-
cer. The CT investigation will be performed before 
histopathological sampling, to obtain information 
regarding morpho-densitometric characteristics of 
the lesion and to plan the subsequent biopsy pro-
cedure (25-28).
Prior to treatment administration and molecular 
pathology assessments, all patients provided written 
informed consent. The study was approved by the 
Ethics Committee “Comitato Etico Università degli 
Studi della Campania Luigi Vanvitelli” (approval No. 
24997/2020) on 11th November 2020.
The recruitment and collection phase of clinical 
anamnestic data will be performed in a specific 
DICOM file (structured report) and will start after 
Informed Consent has been signed by the patient. 
Informed Consent will be accurately prepared for 
this study by the PI and substitute PI.

Imaging Acquisition and Analysis
Once the CT imaging has been acquired, the DICOM 
images will be evaluated by the PI and the Deputy 
PI from the first to sixth bimonthly period of the 
first year. From the second to the sixth bimonthly 
period of the first year a quantitative analysis of the 
lung lesion will be performed with an artificial intel-
ligence system capable of identifying the tumor on 
the CT image, calculating its diameters and volume 
in a semi-automatic way.
Subsequently, the radiologists assisted by the engi-
neer of the second research unit, will export the CT 
images. This phase will take place from the third 

Table 1. Overview of Study Phases and Methodologies.

PHASE DESCRIPTION TECHNIQUES / TOOLS
Data Collection Collection of clinical data, imaging, and biopsy samples Clinical Records, CT Imaging, Liquid Biopsy

Radiomic Analysis Extraction of radiomic features from imaging data Pyradiomics, ITK-SNAP

Genetic Analysis Study of genetic mutations through liquid biopsy PCR, Sequencing

Prediction of 
Outcomes Combination of data to predict therapeutic outcomes Machine Learning Models, AUC
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to the sixth bimonthly period of the first year. The 
images exported by the individual research units will 
be archived using a ‘GDPR compliant’ Cloud system 
that will be developed ad hoc for the study.
The cloud platform comprises:
	- Storage Section: Secure archiving of DICOM files, 

structured reports, and genetic data.
	- Computing Section: An online application for struc-

tured reporting, integrating clinical and anam-
nestic information, ensuring standardized pro-
cedures and simplifying radiomics/radiogenom-
ics analysis.

Following the data extraction, during the period 
from the fifth to the fourth two-month period of 
the first year to the second year, the Department 
of Electrical Engineering and Information Technol-
ogies at the University of Federico II will carry out 
the computational analysis of the tumour volume 
to extract the radiomics features. Subsequently, 
from the sixth bimonthly period of the first year to 
the fourth bimonthly period of the second year, the 
same Department will carry out the classification 
of radiomic features with Machine Learning tech-
niques. Finally, from the sixth bimonthly period of 
the first year to the third bimonthly period of the 
second year, these data will be processed and ana-
lysed to predict tumour characteristics.
Peripheral venous blood samples can be gathered 
throughout imaging acquisition to evaluate liquid 
biopsy molecular data. Plasma samples will be stored 
in two laboratories to maintain ctDNA integrity:
	- Molecular and Precision Oncology Laboratory 

(Vanvitelli University and Biogem scarl)
	- Cytology and Predictive Molecular Pathology Lab-

oratory (Federico II University).

Furthermore, from the fifth two-month period of the 
first year to the third two-month period of the sec-
ond year, the extraction of the ctDNA and the prepa-
ration of the genetic library will be performed by 
using OncomineTM Lung ctDNA Assay (Thermofisher, 
Massachusetts, USA). Afterwards, from the first two-
month period of the second year to the fourth two-
month period of the second year, the sequencing 
by Next Generation Sequencing (NGS) technique on 
the Ion Torrent GeneStudio S5Plus system (Ther-
mofisher, Massachusetts, USA) will be run. Regard-
ing data analysis, NGS technology involves various 
processes, which are very expensive from the point 
of view of the computational resources used. Gene 
sequencing of cfDNA samples using the NGS tech-

nique will be analysed on ThermoFisher systems 
and software.
The analysis of the characteristic driver mutations of 
lung cancer, as included in the OncomineTM Lung 
ctDNA Assay, provides sequencing of 11 genes (ALK, 
BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA, 
ROS1, and TP53) and more than 150 hotspots. The 
analysis has a high specificity and sensitivity, along 
with an efficient workflow that enables the rapid gen-
eration of results. In addition to being inclusive of 
clinical-laboratory information, patient data will also 
contain information obtained from genetic analysis 
and will always be archived within the same cloud 
platform created ad hoc by the Department of Bio-
medical Engineering of Federico II.
Subsequently, from the third two-month period of 
the first year to the sixth two-month period of the 
second year, the two Research Units will undertake 
to correlate the data obtained from radiomic anal-
ysis with the data obtained from genetic analysis.
Finally, from the sixth two-month period of the first 
year to the sixth two-month period of the second 
year, the Engineering department of the second 
Unit will carry out the Radiomic analysis of the seg-
mented volume using Imaging with the aim of obtain-
ing a number of significant features that can be cor-
related with the genetic data of the liquid biopsy.

Techniques for the Analysis of Liquid Biopsy
A liquid biopsy will be performed only for patients 
who have previously undergone a CT study for diag-
nosis and staging. All patients enrolled in the study 
will undergo a peripheral venous blood sample col-
lection in two test K2 tubes.
The ctDNA will be extracted from the plasma for 
molecular analysis, which will be performed using 
NGS technology, based on Ion Torrent technol-
ogy. Unlike other fluorescence-based platforms, 
Ion Torrent uses an electrochemical approach to 
detect nucleotides, eliminating the need for opti-
cal labels and thereby increasing sequencing speed 
and accessibility. After genomic library preparation, 
DNA molecules are fragmented and ligated to oligo-
nucleotide adapters, allowing immobilization onto 
specific beads. Each bead is then placed into an oil 
droplet containing emulsion PCR (emPCR) reagents, 
ensuring that each bead carries a single amplified 
DNA molecule. After amplification, the beads are 
loaded into a semiconductor chip, with each well 
containing a single bead with multiple copies of the 
same DNA fragment. Sequencing occurs through 
the sequential introduction of nucleotides. When a 
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complementary nucleotide is incorporated by DNA 
polymerase, a proton (H+) is released, causing a pH 
shift. This change is detected by chip sensors, which 
convert the electrochemical signal into digital data.

Routine Sample Processing Strategy
Circulating free nucleic acids are purified from 1 
mL of clarified plasma. In particular, cfDNA is iso-
lated by using the Qiamp Circulating Nucleic Acid 
Kit (Qiagen) and eluted with 50µL of Nuclease-free 
Water, following manufacturer instructions. The 
extracted cfDNA is stored at -20°C. The concentra-
tion of cfDNA is evaluated using a Qubit 4 fluorom-
eter (ThermoFisher) with the Qubit 1X dsDNA High 
Sensitivity (HS) kit.
Extracted cfDNA samples are tested on Genexus 
(Thermo Fisher Scientific) system. The platform 
enables entire NGS workflows (from library prepara-
tion to data interpretation) within 24 hours. The OPA 
assay includes the most clinically relevant actionable 
genes for solid tumour patients. Firstly, samples are 
created on a dedicated server and assigned to a new 
run. Then, the Genexus platform is loaded with OPA 
primers, strip solutions, strip reagents, and supplies 
according to manufacturer instructions. A total of 
10ng is required by the OPA assay on the Genexus 
platform. Accordingly, each sample is dispensed on 
a 96-well plate, following manufacturer instructions.
Finally, nucleic acids are sequenced on a GX5™ chip 
that allows for the simultaneous processing of n = 4 
samples in a single line with an OPA assay, for a max-
imum of 4 lanes (16 samples) in a row. Data analysis 
is performed using proprietary IonTorrent Genexus 
software (6.8.2.0). Particularly, detected alterations 
are annotated by adopting Oncomine Knowledge-
base Reporter Software (Oncomine Reporter 5.0).
In addition, BAM files are also visually inspected with 
the Golden Helix Genome Browser v.2.0.7 (Bozeman, 
MT, USA) in hotspot regions in EGFR, KRAS, and BRAF 
lung cancer-addicted molecular alterations.

cfMeDIP-seq
cfMeDIP-seq is conducted following previously pub-
lished protocols. In short, cfDNA libraries are gener-
ated using the Kapa Hyper Prep Kit (Roche) accord-
ing to the manufacturer’s guidelines. After perform-
ing end-repair and A-tailing, adaptors from the NEB-
Next Multiplex Oligos for Illumina (NEB) are ligated to 
the samples, followed by purification using AMPure 
XP beads.
To achieve a final quantity of 100 ng, Lambda DNA—
comprising both methylated and unmethylated 

amplicons with varying CpG content—is added to 
the libraries. 0.3 ng of methylated and unmethylated 
Arabidopsis thaliana DNA is added for quality control 
purposes (Diagenode). One small part of the library 
is kept aside for input control (IC), and the remaining 
part was used for immunoprecipitation (IP).
MeDIP is carried out with the MagMeDIP Kit (Diag-
enode) and Antibody anti5mC* (33D3 clone) as per 
the manufacturer’s protocol. The efficiency of the 
immunoprecipitation is verified via qPCR by detect-
ing the recovery of the spiked-in Arabidopsis thali-
ana DNA (both methylated and unmethylated), fol-
lowing Diagenode’s instructions. All samples with a 
specificity of reaction are sequenced at the resolu-
tion with a mean of 54.7 million reads per sample, 
resulting in ~5.1X depth per sample.

Processing of cfMeDIP-seq data
The quality of raw reads is evaluated using FastQC 
version 0.11.9 and MultiQC version 1.11. Low-quality 
reads and adaptors are removed with Trim Galore 
version 0.6.6. The trimmed reads are aligned to hg38 
with Bowtie2 version 2.3.4.3. SAMTools version 1.9 
is used to convert the SAM alignment files to BAM 
files, sort and index reads, and remove duplicates. 
Samples with <10M mapped reads are excluded. 
Tumour fraction is estimated using IchorCNA on 
the low-pass WGS of IC samples.

Processing of cfMeDIP-seq data
The quality of raw reads is evaluated using FastQC 
version 0.11.9 (https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc) and MultiQC version 
1.11 (29). Then, low-quality reads and adaptors are 
removed with Trim Galore version 0.6.6 (https://
www.bioinformatics.babraham.ac.uk/projects/trim_
galore). The trimmed reads are aligned to hg38 with 
Bowtie2 version 2.3.4.3 (30). SAMTools version 1.9 (31) 
is used to convert the SAM alignment files to BAM 
files, sort and index reads, and remove duplicates. 
Samples with <10 M mapped reads are excluded. 
Tumour fraction is estimated using IchorCNA (20) 
on the low-pass WGS of IC samples.

Identification and annotation of differentially 
methylated regions (DMRs)
The filtered BAM files are processed using MEDIPS 
(32) to identify the Differentially Methylated Regions 
(DMRs) between LC patients with different hystotypes 
and stages. The enrichment scores relH and GoGe 
are estimated for each sample to express the grade 
of CpG enrichment in the DNA fragments compared 
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to the reference genome. The enrichment score relH 
is the ratio between the relative frequency of CpGs 
within the regions and the reference genome. The 
enrichment score GoGe is the observed/expected 
ratio of CpGs within the regions and the reference 
genome. Samples with a relH value less than 2.7 and/
or a GoGe value less than 1.75 are excluded. Then, 
the genome of each sample is binned into 300-bp 
windows, and the methylation status of each bin is 
compared between the two groups. Regions with 
an absolute value of log2 fold change (FC) greater 
than or equal to 2 and a p-value less than 0.01 are 
selected as differentially methylated. The identified 
DMRs are annotated with the annotatr (33) R pack-
age. Gene set enrichment with DAVID and gene 
ontologies with a p-value less than 0.05 is selected.

Base Calling
In base calling, nucleotide sequences are “extracted” 
from the image data generated by sequencing plat-
forms. Base-calling algorithms convert image infor-
mation into sequence data. The process also cor-
rects for artefacts such as crosstalk and phase errors. 
Crosstalk occurs due to overlapping fluorescence 
emissions of different nucleotides, while phasing is 
caused by signal dispersion and diffusion between 
cycles. Each base is assigned a quality score, called 
the “Phred quality score” (Q), which indicates the 
accuracy of base identification.

Alignment
Short DNA reads (200–8000 bp) are sequenced from 
either one or both ends of DNA fragments (single-end 
or paired-end reads), with typical lengths around 400 
bp on platforms like 454. Alignment aims to locate 
these reads on a reference sequence, but challenges 
arise in regions that diverge significantly from the 
reference. Using longer or paired-end reads, which 
sequence DNA in both 5’-3’ and 3’-5’ directions, can 
improve alignment accuracy. A critical factor for suc-
cessful assembly is coverage, defined as the num-
ber of times a sequence aligns with the reference, 
ensuring reliability and completeness in the recon-
structed sequence.

Calibration of Quality Scores
Phred quality scores derived from alignment algo-
rithms do not always accurately reflect real errors in 
base calling. Therefore, recalibration is performed, 
considering factors such as raw quality scores, the 
relative position of the base within the read, and 
the dinucleotide context.

Clinical Applications
The clinical applications of liquid biopsy depend on 
the approach used to study circulating tumour cells 
or ctDNA. A quantitative approach provides prog-
nostic information, while a qualitative approach 
enables the analysis of predictive mutations, mon-
itoring of clonal evolution, and adjustment of ther-
apeutic strategies. ctDNA, released by apoptotic or 
necrotic tumour cells, provides DNA information 
from both primary lesions and metastases.

Imaging Techniques
CT will be performed using multidetector equipment 
(GE Revolution GSI 128 MDTC).
Clinical and radiological data will be collected to cor-
relate with molecular and genomic data.

Radiologists’ Responsibilities
Radiologists will be required to:
	- Collect clinical information using a structured 

report (see sheet).
	- Obtain informed consent from patients.

Extraction of Quantitative Features for 
Radiomics

Textural Features
Plot features will be obtained from manually seg-
mented ROIs on CT images. They will include first-or-
der features (mean, mode, median, standard devia-
tion (std), median absolute deviation (MAD), range, 
kurtosis, skewness, and interquartile range (IQR) 
and second-order characteristics. For the latter, 
bandpass, wavelet, isotropic resampling, discre-
tisation length corrections and different quanti-
sation tools will be implemented. The first three 
sets are based on the grey-level co-occurrence 
matrix (GLCM), the grey-level run-length matrix 
(RLM), and the size zone matrix (SZM), all of which 
belong to the family of statistical matrices. Once 
these matrices have been constructed, it is possi-
ble to derive texture features (such as Haralick fea-
tures and moments).
To improve robustness, advanced techniques like 
bandpass filtering, wavelet transformations, isotro-
pic resampling, and quantisation corrections will 
be applied. Multi-grey-level SZM variants will also 
be utilised to compute texture features across var-
ious quantisation levels, combining the results using 
weighted averages to enhance sensitivity to subtle 
texture variations.
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The formula for calculating the multi-gray-level SZM 
is as follows:

MSZMff (s,g) = ∑wkkSZMff
NNk(s,g)

The integration of these features enables detailed 
and multi-scale texture characterisation, optimising 
the ability to differentiate and classify lung lesions 
in CT imaging, even across diverse morphological 
and pathological presentations.

Morphological Features
A set of morphological features will be considered, 
including mean radial length, radial length entropy, 
irregularity, diameter, circularity, compactness, 
smoothness, roughness, rectangularity, convexity, 
eccentricity, and eulogy.

Classification Methods
Classification involves assigning an individual (such 
as a lesion or patient) to a specific class based on 
extracted features. This is done using a feature vec-
tor x = [x(1),x(2), … ,x(N)], where the classifier assigns 
the individual to one of K possible classes.
The process includes several steps:
	- Choosing the Classification Criterion:

This decision (linear or nonlinear) depends on the 
problem and the available data.

	- Training:
The classifier is trained on a data subset, typi-
cally using supervised learning with cross-vali-
dation techniques.

	- Validation:
The classifier’s performance is tested on a sepa-
rate dataset to evaluate its generalisation ability.

The performance of a classifier depends on the com-
bination of features, algorithms, and training meth-
ods used. In recent years, deep learning techniques 
have gained popularity for their ability to identify 
critical features from large datasets automatically.
eeThe following sections examine some of the most 
popular classification techniques and methods. In 
this study, all currently available techniques will be 
applied with the aim of finding the best combina-
tion in terms of classification performance.

Classifier Types
Classification techniques can be essentially divided 
into linear and nonlinear. Linear techniques adopt a 
linear combination (sum) of features to try to classify 
the individual. Such techniques (e.g., Linear Discrim-
inant Analysis, LDA) are helpful when features are 

chosen such that the problem is linearly separable.
More often, the problem is not linearly separable, 
and therefore nonlinear techniques (such as neural 
networks, k-nearest-neighbours, and support vector 
machines) are more useful. Trees are a special type 
of nonlinear classifier that is based on successive 
dichotomous processes. At each step, the algorithm 
creates a binary separation, and each leaf is further 
divided into two at the next step. This type of algo-
rithm is generally chosen for its ‘human’ comprehen-
sibility. Dichotomies are binary decisions of the yes/
no type on individual features, and thus their inter-
pretation is transparent. In contrast, classification 
rules generated by linear or nonlinear algorithms 
are generally not understandable.

Cross-Validation
Cross-validation is an essential aspect of classifier 
training and aims to reduce possible overfitting, i.e., 
the tendency of training to select parameters that 
make the classifier very good at classifying individ-
uals used as a training set, while the ability to gen-
eralise, i.e., classify individuals not belonging to the 
training set, is limited. This issue is related to the 
fact that, often, as in the present case, it is not pos-
sible to examine a significant sub-population that is 
representative of the entire population (all possible 
breast cancers, in this case). Therefore, it is neces-
sary for the classifier to be able to have reasonable 
performance on the entire population.

Evaluation Metrics
Performance metrics for classifiers will include stan-
dard measures like True Positives, False Positives, 
ROC curves, and confusion matrices. For binary clas-
sifiers, the confusion matrix provides insight into 
misclassifications; for multi-class classifiers, more 
complex metrics are used.

Implementation in the Present Protocol
All pre-processing, DICOM image handling, and fea-
ture extraction will be conducted using Matlab (The 
MathWorks Inc., Natick, MA) or R (R Core Team, 
2018). Matlab is widely used for scientific data pro-
cessing and classification. At the same time, R is an 
open-source statistical analysis tool that has grown 
to support advanced techniques in machine learn-
ing and radiomics.

Statistical Analysis
The characteristics of the study population and other 
relevant variables will be described using the appro-
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priate descriptive statistics for both continuous and 
categorical data.
Data will be presented with absolute frequencies 
and percentages, reporting the respective confi-
dence limits. The mean and standard deviation will 
be reported for discrete parameters, following a 
Gaussian curve. Medians and interquartile ranges 
will be reported in cases where parameters are not 
distributed according to a Gaussian curve. Paramet-
ric and nonparametric tests for paired and unpaired 
data will be used, regardless of whether the data 
distribution is Gaussian or non-Gaussian, to detect 
statistically significant differences between groups. 
For continuous variables, the difference between 
median values for different groups will be calcu-
lated and tested using a two-sided Student t-test 
(if the differences are normally distributed) or the 
Mann-Whitney test (if the differences are gener-
ally not distributed. Assessment of inter-observer 
variability will be performed by calculating Cohen’s 
Kappa index. Mixed-effects regression models will 
adjust for covariates in longitudinal data. Multivari-
ate analysis, including linear classifiers, support vec-
tor machines, and decision trees, will explore fea-
ture combinations to optimise classification accu-
racy of lung lesions.
A p-value <0.05 will indicate statistical significance, 
with Bonferroni correction for multiple comparisons. 
Analyses will use Matlab Statistics Toolbox and R.

DISCUSSION
Precision medicine enables the targeted treatment 
of LC, including stage III, by applying multimodal 
omic strategies tailored to individual groups based 
on their genetics (34, 36).
Radiogenomics aims to correlate imaging pheno-
types with gene and epigenetic modifications. Radio-
mics has recently emerged as a promising tool 
for discovering new imaging biomarkers. It can be 
applied to any field of diagnostic imaging and is 
used in various clinical settings. Radiogenomics is 
a specialised evolution of oncology radiomics that 
utilises imaging capabilities to non-invasively iden-
tify or predict tumour-specific genomic alterations 
(37-38).
The biopsy of the suspected cancer is today the gold 
standard for the characterisation of LC. However, it 
is expensive, invasive and evaluates only the sam-
pled section of a heterogeneous tumour. The appli-
cative and ambitious goal of the present study is 

to develop a new protocol and mathematical algo-
rithm based on the imaging of the entire tumour or 
of a multifocal tumor load in a single patient, with 
the possibility of providing a non-invasive diagnosis 
correlating also the data derived from liquid biopsy 
on the gene mutations and epigenetic changes of 
the tumour.
Currently, there is no universal image acquisition 
protocol and no structured reporting standards (39) 
The method and application of the structured report 
could be adopted as a reporting method not only in 
LC but more generally in all cancers. The algorithm 
derived from the present study should be validated 
by scientific agencies and societies to transfer the 
obtained diagnostic procedures into the clinical set-
ting and real-world practice.
Suppose the goals of the present project are suc-
cessful. In that case, they will result in a significant 
reduction of health system expenses, allowing for 
highly personalised LC treatment and enabling ear-
ly-stage diagnosis, thereby avoiding unnecessary 
treatments.
All this would bring enormous benefits to patients 
in terms of quality of life and social and productive 
contribution.
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