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ABSTRACT: in recent years, imaging techniques have been successfully used to deliver diagnostic biomarkers with even greater
accuracy. In particular, radiomic analysis methods (application of artificial intelligence on radiological images), which describe a
segmented tumor region, using various quantitative characteristics derived from radiological images, have shown great potential
in the identification, characterisation/classification of different types of cancer and in evaluating the response to radiotherapy and
chemotherapy. Liquid biopsy is used for both early screening of malignancy and diagnosing minimal residual disease. It is also
performed to assess and monitor the response to pharmacological treatments for a personalised therapeutic strategy. The analysis
of morphostructural data obtained by imaging, correlated with the genetic/molecular results of liquid biopsy, could provide useful
predictive factors for early diagnosis and predicting the response to anti-cancer drugs. The study aims to design and develop a
report structured in CT with contrast media, which includes, in addition to the subjective evaluation of the radiologist, a quantitative/
objective assessment of lung cancer (LC) with features that describe the texture and morphology of the lesion. Therefore, we present
a workflow aimed at extracting the DICOM images acquired with CT using contrast medium from a significant number of patients,
and to evaluate their accuracy in characterising the LC lesions. Furthermore, these data will be correlated to gene mutations and
epigenetic changes (DNA methylation) evaluated in circulating tumour DNA derived from peripheral blood with a liquid biopsy
approach. The correlation between radiomic characteristics, quantitative analysis of tumours performed by CT, structured lesion
reports, and liquid biopsies could help avoid many unnecessary biopsy procedures and enable personalised treatment of LC patients.
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notherapies have been developed due to the discov-

BACKGROUND

Lung cancer (LC) represents a leading cause of death
worldwide, contributing to a high percentage of can-
cer-related deaths in both sexes (1). However, over
the last decade, novel targeted therapies and immu-

ery of different mutations and aberrations in driver
oncogenes (2, 3). Based on this, molecular testing
and clinical biomarkers are now routinely used in
clinical practice for the management of advanced
LC, including the search for activating mutations
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of epidermal growth factor receptor (EGFR), BRAF,
HER2, MET, ERBB2 and KRAS, rearrangements of ana-
plastic lymphoma kinase (ALK) and ROS proto-onco-
genel (ROST) as well as fusions of NTRK1-3 genes (4,
5). Unfortunately, a large proportion of patients have
an advanced disease, especially stage Ill, at diagno-
sis, thus excluding tumor resection opportunities (6,
7). In these cases, the available tumour tissue that
can be used for molecular testing is often limited,
being represented by small needle core biopsies or
cytology specimens due to the risks associated with
biopsy procedures involving the lung. However, the
collection of sufficient material for diagnosis, sub-
typing, and characterisation is mandatory, and when
not available, repeating the diagnostic procedures
can lead to delayed decision-making in creating an
algorithm. This can lead to detrimental effects on
the clinical outcome of the patients, especially in
stage |, Il LCs in which the molecular diagnosis is
essential for treatment decisions. In fact, in stage
Il LC, concurrent chemoradiotherapy (CRT) associ-
ated with the immunotherapy represents the pre-
ferred treatment, being proven to increase the over-
all survival of the patients if compared to radiother-
apy alone. The rapidity of the best therapy choice is
essential in these cases, considering that the optimal
and personalised treatment of stage Il LC patients
is critical for achieving disease downstaging, which
allows for subsequent surgical resection. The diag-
nostic delay can lead to a loss of the therapeutic win-
dow and subsequent opportunities for neoadjuvant

treatment.Therefore, the availability of a diagnos-
tic technique that enables a rapid definition of the
diagnostic workflow is essential for informed treat-
ment decision-making. Methodologies based upon
liquid biopsy fulfil this role by allowing a wide range
of molecular assessments through a minimally inva-
sive procedure (8, 9). Different body fluids can be
used for liquid biopsy, including saliva, cerebrospinal
fluid, and, more often, peripheral blood. The latter
is collected to obtain intact circulating tumour cells
or their products, including circulating cell-free DNA
(cfDNA), circulating tumour DNA (ctDNA), circulating
mMiRNA, exosomes, extracellular vesicles, and others
(10, 11). These products could subsequently be used
in diagnosis, prediction of response, monitoring of
treatment, and assessment of mutational status
before and during the various treatments to which
patients are subjected. Therefore, liquid biopsy is
highly attractive for assessing both the tumour biol-
ogy and molecular status of LC, both at single or
multiple time points (e.g., at diagnosis or relapse).
For instance, it is established that LC demonstrates
genomic instability with the progressive acquisition
of genetic alterations (including point mutations,
chromosomal instability and epigenetic alterations),
although at varying rates, resulting in the develop-
ment of genetic changes during the clinical evolu-
tion of the disease, as well as due to the effects of
the different treatments. In stage Il LC, these alter-
ations can contribute to clonal evolution and resis-
tance development, emphasizing the need for the
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Figure 1. Workflow of the LIDIA project, from patient enrollment to data analysis, Al modelling, clinical validation, and personalized treatment.
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continuous tracking of LC molecular profile during
treatment. The selection of resistant clones during
therapy represents a significant mechanism for the
development of treatment resistance and disease
progression. Moreover, given the increasing role of
targeted therapy, the monitoring of the molecular
profile of the disease is of paramount importance to
identify resistance mechanisms. Therefore, all test-
ing strategies that offer a safe modality for assess-
ing LC biology are likely to be of significant clinical
interest. An example is provided by the observation
that approximately 15% of LC, particularly advanced
non-small cell lung cancers (NSCLCs), display acti-
vating EGFR mutations, which can be targeted by
tyrosine kinase inhibitors (TKIs). Liquid biopsy can
be used not only to determine the presence of acti-
vating EGFR mutations in treatment-naive patients
for whom the tissue sample is insufficient or inade-
quate for molecular analysis, but also in patients who,
after disease progression to first- or second-gener-
ation TKis, develop resistance mechanisms.

The identification of EGFR mutations is also crucial
for the management of early-stage NSCLC patients
who may be candidates for adjuvant therapy with
the latest-generation TKI, Osimertinib. Moreover, the
potential incorporation of liquid biopsy techniques
into screening algorithms, both for routine popu-
lation screening and for therapy monitoring, rep-
resents an extremely attractive approach and an area
of active investigation with promising early results.
Liquid biopsy has definite and clinically relevant
applications for the management of LC, particu-
larly in stage Ill and other advanced stages, as well
as in early-stage disease; however, its use is lim-
ited by cost, technical challenges, and availability.
Therefore, although it is highly predictable that lig-
uid biopsy will play a significant role in diagnosis,
response assessment, and ongoing surveillance in
the future, the available data are still inconclusive.
Liquid biopsy techniques offer an excellent com-
bination of convenience and safety for molecular
profiling, reducing the need for invasive and techni-
cally complicated tissue sampling. This information
can be combined with data from imaging of tumour
lesions to improve the diagnostic definition of the
disease, allowing for molecular subtyping and pre-
dicting response to therapies.

Another critical challenge of the present study is
determining the epigenetic alteration of cfDNA based
on its methylation profile. Epigenetic modifications
are considered a hallmark of cancer and are found
in early stages of disease, tumour progression, and
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metastasis formation. DNA methylation is a tissue-
and cancer-specific modification and, in contrast to
the heterogeneity of gene mutations, appears to be
similar in cancer cells of the same type and tissue
origin (12, 13). Genome-wide methylation analysis
using the bisulfite conversion method of cfDNA has
been previously employed for cancer diagnosis (14).
However, this method is expensive, time-consuming,
and requires large amounts ofcfDNA. An innovative
and highly sensitive alternative is offered by using
cell-free methylated DNA immunoprecipitation with
anti-5mC antibodies and subsequent high-through-
put sequencing (cfMeDIP-seq) (15) to assess the meth-
ylation profile, even with low cfDNA input. Differen-
tially methylated regions (DMRs) have been used to
construct classifiers that can identify patients with
several cancers (15, 16). Therefore, one of the objec-
tives of the present study will be to use cfMeDip for
the early diagnosis, determination of minimal resi-
due disease, and histological subtyping of patients
with LC, and to correlate these results with radio-
logical imaging.

Based on these advances, this study aims to evalu-
ate the diagnostic accuracy of chest CT in the mor-
pho-structural characterisation of stage Ill LC. By
extracting radiomic capabilities related to the struc-
ture and morphology of the lesions, the observation
aims to correlate this information with the results of
genetic, epigenetic, and molecular analyses obtained
through liquid biopsy.

METHODS/DESIGN

The concept of a single-site biopsy to monitor dis-
ease dynamics during therapy is practically unfea-
sible, as it is invasive and may result in an under-
estimation of heterogeneity. On the other hand, a
liquid biopsy based on the analysis of circulating
tumour cells or tumour macromolecular products
reflects the mutational status of the overall disease
sites, allowing for the identification of emerging sub-
clones responsible for treatment resistance. Addi-
tionally, radiomics has emerged as a novel field of
research dealing with the extraction and analysis of
specific features from diagnostic images, potentially
reflecting the pathophysiological processes and the
heterogeneity of tumour genetics.

The combined approach of radiomics and liquid
biopsy has the potential to elucidate the dynamics
of molecular lesions, thereby supporting informed
clinical decision-making (17, 18).
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Table 1. Overview of Study Phases and Methodologies.

| PHASE | DESCRIPTION TECHNIQUES / TOOLS

Data Collection
Radiomic Analysis
Genetic Analysis

Prediction of
Outcomes

Aims and objectives

The project aims to create a structured reportin CT
with contrast media, which includes, in addition to
the subjective evaluation of the radiologist, a quan-
titative/objective assessment of the lung tumour
with several features that describe the texture and
morphology of the lesion (19, 20).

Therefore, as shown in Figure 1, the project aims to
extract the DICOM images acquired with CT with con-
trast medium, from a significant number of patients,
with a particular focus on stage Il LC, for the sub-
sequent evaluation of their accuracy in the char-
acterisation of LC malignancy. Furthermore, in the
same patients, the molecular analysis of the genes
involved in LC will be performed on DNA extracted
from a peripheral blood sample (21, 22).

The correlation between radiomic characteristics,
quantitative analysis of tumours performed by CT,
structured lesion reports, and liquid biopsies could
help avoid many unnecessary biopsy procedures
(23, 24).

Study design

This section outlines the techniques and protocols

of our experimental study, aimed at integrating sci-

entific, molecular, and imaging records to assess the

diagnostic accuracy of CT scans and liquid biopsy

in LC management, with a selected emphasis on

stage Il cases.

Inclusion criteria:

- Age 218 years

- Full understanding of the study and signed
informed consent

- Presence of a neoplasm requiring further diag-
nostic evaluation

- Availability to undergo liquid biopsy.

Exclusion criteria:

- Allergies to contrast media

- Inability to maintain immobility during the exam
- Pregnancy or breastfeeding

Collection of clinical data, imaging, and biopsy samples
Extraction of radiomic features from imaging data
Study of genetic mutations through liquid biopsy

Combination of data to predict therapeutic outcomes

Clinical Records, CT Imaging, Liquid Biopsy
Pyradiomics, ITK-SNAP
PCR, Sequencing

Machine Learning Models, AUC

- Risk factors for contrast nephropathy (GFR <60
ml/dl)
- Known allergy to contrast agent.

Recruitment Process

In the first year, from the first bimonthly period to
the sixth, the two Diagnostic Imaging Units will be
responsible for enrolling hospitalised patients who
undergo CT-guided biopsy for suspected lung can-
cer. The CT investigation will be performed before
histopathological sampling, to obtain information
regarding morpho-densitometric characteristics of
the lesion and to plan the subsequent biopsy pro-
cedure (25-28).

Prior to treatment administration and molecular
pathology assessments, all patients provided written
informed consent. The study was approved by the
Ethics Committee “Comitato Etico Universita degli
Studi della Campania Luigi Vanvitelli” (approval No.
24997/2020) on 11t November 2020.

The recruitment and collection phase of clinical
anamnestic data will be performed in a specific
DICOM file (structured report) and will start after
Informed Consent has been signed by the patient.
Informed Consent will be accurately prepared for
this study by the Pl and substitute PI.

Imaging Acquisition and Analysis

Once the CT imaging has been acquired, the DICOM
images will be evaluated by the Pl and the Deputy
PI from the first to sixth bimonthly period of the
first year. From the second to the sixth bimonthly
period of the first year a quantitative analysis of the
lung lesion will be performed with an artificial intel-
ligence system capable of identifying the tumor on
the CT image, calculating its diameters and volume
in a semi-automatic way.

Subsequently, the radiologists assisted by the engi-
neer of the second research unit, will export the CT
images. This phase will take place from the third
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to the sixth bimonthly period of the first year. The

images exported by the individual research units will

be archived using a ‘GDPR compliant’ Cloud system
that will be developed ad hoc for the study.

The cloud platform comprises:

- Storage Section: Secure archiving of DICOM files,
structured reports, and genetic data.

- Computing Section: An online application for struc-
tured reporting, integrating clinical and anam-
nestic information, ensuring standardized pro-
cedures and simplifying radiomics/radiogenom-
ics analysis.

Following the data extraction, during the period
from the fifth to the fourth two-month period of
the first year to the second year, the Department
of Electrical Engineering and Information Technol-
ogies at the University of Federico Il will carry out
the computational analysis of the tumour volume
to extract the radiomics features. Subsequently,
from the sixth bimonthly period of the first year to
the fourth bimonthly period of the second year, the
same Department will carry out the classification
of radiomic features with Machine Learning tech-
niques. Finally, from the sixth bimonthly period of
the first year to the third bimonthly period of the
second year, these data will be processed and ana-
lysed to predict tumour characteristics.

Peripheral venous blood samples can be gathered
throughout imaging acquisition to evaluate liquid
biopsy molecular data. Plasma samples will be stored
in two laboratories to maintain ctDNA integrity:

- Molecular and Precision Oncology Laboratory

(Vanvitelli University and Biogem scarl)
- Cytology and Predictive Molecular Pathology Lab-
oratory (Federico Il University).

Furthermore, from the fifth two-month period of the
first year to the third two-month period of the sec-
ond year, the extraction of the ctDNA and the prepa-
ration of the genetic library will be performed by
using OncomineTM Lung ctDNA Assay (Thermofisher,
Massachusetts, USA). Afterwards, from the first two-
month period of the second year to the fourth two-
month period of the second year, the sequencing
by Next Generation Sequencing (NGS) technique on
the lon Torrent GeneStudio S5Plus system (Ther-
mofisher, Massachusetts, USA) will be run. Regard-
ing data analysis, NGS technology involves various
processes, which are very expensive from the point
of view of the computational resources used. Gene
sequencing of cfDNA samples using the NGS tech-
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nique will be analysed on ThermoFisher systems
and software.

The analysis of the characteristic driver mutations of
lung cancer, as included in the OncomineTM Lung
ctDNA Assay, provides sequencing of 11 genes (ALK,
BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA,
ROST1, and TP53) and more than 150 hotspots. The
analysis has a high specificity and sensitivity, along
with an efficient workflow that enables the rapid gen-
eration of results. In addition to being inclusive of
clinical-laboratory information, patient data will also
contain information obtained from genetic analysis
and will always be archived within the same cloud
platform created ad hoc by the Department of Bio-
medical Engineering of Federico Il.

Subsequently, from the third two-month period of
the first year to the sixth two-month period of the
second year, the two Research Units will undertake
to correlate the data obtained from radiomic anal-
ysis with the data obtained from genetic analysis.
Finally, from the sixth two-month period of the first
year to the sixth two-month period of the second
year, the Engineering department of the second
Unit will carry out the Radiomic analysis of the seg-
mented volume using Imaging with the aim of obtain-
ing a number of significant features that can be cor-
related with the genetic data of the liquid biopsy.

Techniques for the Analysis of Liquid Biopsy

A liquid biopsy will be performed only for patients
who have previously undergone a CT study for diag-
nosis and staging. All patients enrolled in the study
will undergo a peripheral venous blood sample col-
lection in two test K2 tubes.

The ctDNA will be extracted from the plasma for
molecular analysis, which will be performed using
NGS technology, based on lon Torrent technol-
ogy. Unlike other fluorescence-based platforms,
lon Torrent uses an electrochemical approach to
detect nucleotides, eliminating the need for opti-
cal labels and thereby increasing sequencing speed
and accessibility. After genomic library preparation,
DNA molecules are fragmented and ligated to oligo-
nucleotide adapters, allowing immobilization onto
specific beads. Each bead is then placed into an oil
droplet containing emulsion PCR (emPCR) reagents,
ensuring that each bead carries a single amplified
DNA molecule. After amplification, the beads are
loaded into a semiconductor chip, with each well
containing a single bead with multiple copies of the
same DNA fragment. Sequencing occurs through
the sequential introduction of nucleotides. When a
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complementary nucleotide is incorporated by DNA
polymerase, a proton (H+) is released, causing a pH
shift. This change is detected by chip sensors, which
convert the electrochemical signal into digital data.

Routine Sample Processing Strategy

Circulating free nucleic acids are purified from 1
mL of clarified plasma. In particular, cfDNA is iso-
lated by using the Qiamp Circulating Nucleic Acid
Kit (Qiagen) and eluted with 50pL of Nuclease-free
Water, following manufacturer instructions. The
extracted cfDNA is stored at -20°C. The concentra-
tion of cfDNA is evaluated using a Qubit 4 fluorom-
eter (ThermoFisher) with the Qubit 1X dsDNA High
Sensitivity (HS) kit.

Extracted cfDNA samples are tested on Genexus
(Thermo Fisher Scientific) system. The platform
enables entire NGS workflows (from library prepara-
tion to data interpretation) within 24 hours. The OPA
assay includes the most clinically relevant actionable
genes for solid tumour patients. Firstly, samples are
created on a dedicated server and assigned to a new
run. Then, the Genexus platform is loaded with OPA
primers, strip solutions, strip reagents, and supplies
according to manufacturer instructions. A total of
10ng is required by the OPA assay on the Genexus
platform. Accordingly, each sample is dispensed on
a 96-well plate, following manufacturer instructions.
Finally, nucleic acids are sequenced on a GX5™ chip
that allows for the simultaneous processing of n = 4
samplesin a single line with an OPA assay, for a max-
imum of 4 lanes (16 samples) in a row. Data analysis
is performed using proprietary lonTorrent Genexus
software (6.8.2.0). Particularly, detected alterations
are annotated by adopting Oncomine Knowledge-
base Reporter Software (Oncomine Reporter 5.0).
In addition, BAM files are also visually inspected with
the Golden Helix Genome Browser v.2.0.7 (Bozeman,
MT, USA) in hotspot regions in EGFR, KRAS, and BRAF
lung cancer-addicted molecular alterations.

cfMeDIP-seq

cfMeDIP-seq is conducted following previously pub-
lished protocols. In short, cfDNA libraries are gener-
ated using the Kapa Hyper Prep Kit (Roche) accord-
ing to the manufacturer’s guidelines. After perform-
ing end-repair and A-tailing, adaptors from the NEB-
Next Multiplex Oligos for lllumina (NEB) are ligated to
the samples, followed by purification using AMPure
XP beads.

To achieve a final quantity of 100 ng, Lambda DNA—
comprising both methylated and unmethylated

amplicons with varying CpG content—is added to
the libraries. 0.3 ng of methylated and unmethylated
Arabidopsis thaliana DNA is added for quality control
purposes (Diagenode). One small part of the library
is kept aside for input control (IC), and the remaining
part was used for immunoprecipitation (IP).
MeDIP is carried out with the MagMeDIP Kit (Diag-
enode) and Antibody antiSmC* (33D3 clone) as per
the manufacturer’s protocol. The efficiency of the
immunoprecipitation is verified via qPCR by detect-
ing the recovery of the spiked-in Arabidopsis thali-
ana DNA (both methylated and unmethylated), fol-
lowing Diagenode’s instructions. All samples with a
specificity of reaction are sequenced at the resolu-
tion with a mean of 54.7 million reads per sample,
resulting in ~5.1X depth per sample.

Processing of cfMeDIP-seq data

The quality of raw reads is evaluated using FastQC
version 0.11.9 and MultiQC version 1.11. Low-quality
reads and adaptors are removed with Trim Galore
version 0.6.6. The trimmed reads are aligned to hg38
with Bowtie2 version 2.3.4.3. SAMTools version 1.9
is used to convert the SAM alignment files to BAM
files, sort and index reads, and remove duplicates.
Samples with <10M mapped reads are excluded.
Tumour fraction is estimated using IchorCNA on
the low-pass WGS of IC samples.

Processing of cfMeDIP-seq data

The quality of raw reads is evaluated using FastQC
version 0.11.9 (https://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc) and MultiQC version
1.11 (29). Then, low-quality reads and adaptors are
removed with Trim Galore version 0.6.6 (https://
www.bioinformatics.babraham.ac.uk/projects/trim_
galore). The trimmed reads are aligned to hg38 with
Bowtie2 version 2.3.4.3 (30). SAMTools version 1.9 (31)
is used to convert the SAM alignment files to BAM
files, sort and index reads, and remove duplicates.
Samples with <10 M mapped reads are excluded.
Tumour fraction is estimated using IchorCNA (20)
on the low-pass WGS of IC samples.

Identification and annotation of differentially
methylated regions (DMRs)

The filtered BAM files are processed using MEDIPS
(32) to identify the Differentially Methylated Regions
(DMRs) between LC patients with different hystotypes
and stages. The enrichment scores relH and GoGe
are estimated for each sample to express the grade
of CpG enrichment in the DNA fragments compared
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to the reference genome. The enrichment score relH
is the ratio between the relative frequency of CpGs
within the regions and the reference genome. The
enrichment score GoGe is the observed/expected
ratio of CpGs within the regions and the reference
genome. Samples with a relH value less than 2.7 and/
or a GoGe value less than 1.75 are excluded. Then,
the genome of each sample is binned into 300-bp
windows, and the methylation status of each bin is
compared between the two groups. Regions with
an absolute value of log2 fold change (FC) greater
than or equal to 2 and a p-value less than 0.01 are
selected as differentially methylated. The identified
DMRs are annotated with the annotatr (33) R pack-
age. Gene set enrichment with DAVID and gene
ontologies with a p-value less than 0.05 is selected.

Base Calling

In base calling, nucleotide sequences are “extracted”
from the image data generated by sequencing plat-
forms. Base-calling algorithms convertimage infor-
mation into sequence data. The process also cor-
rects for artefacts such as crosstalk and phase errors.
Crosstalk occurs due to overlapping fluorescence
emissions of different nucleotides, while phasing is
caused by signal dispersion and diffusion between
cycles. Each base is assigned a quality score, called
the “Phred quality score” (Q), which indicates the
accuracy of base identification.

Alignment

Short DNA reads (200-8000 bp) are sequenced from
either one or both ends of DNA fragments (single-end
or paired-end reads), with typical lengths around 400
bp on platforms like 454. Alignment aims to locate
these reads on a reference sequence, but challenges
arise in regions that diverge significantly from the
reference. Using longer or paired-end reads, which
sequence DNA in both 5'-3"and 3'-5’ directions, can
improve alignment accuracy. A critical factor for suc-
cessful assembly is coverage, defined as the num-
ber of times a sequence aligns with the reference,
ensuring reliability and completeness in the recon-
structed sequence.

Calibration of Quality Scores

Phred quality scores derived from alignment algo-
rithms do not always accurately reflect real errors in
base calling. Therefore, recalibration is performed,
considering factors such as raw quality scores, the
relative position of the base within the read, and
the dinucleotide context.
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Clinical Applications

The clinical applications of liquid biopsy depend on
the approach used to study circulating tumour cells
or ctDNA. A quantitative approach provides prog-
nostic information, while a qualitative approach
enables the analysis of predictive mutations, mon-
itoring of clonal evolution, and adjustment of ther-
apeutic strategies. ctDNA, released by apoptotic or
necrotic tumour cells, provides DNA information
from both primary lesions and metastases.

Imaging Techniques

CT will be performed using multidetector equipment
(GE Revolution GSI 128 MDTC).

Clinical and radiological data will be collected to cor-
relate with molecular and genomic data.

Radiologists’ Responsibilities

Radiologists will be required to:

- Collect clinical information using a structured
report (see sheet).

- Obtain informed consent from patients.

Extraction of Quantitative Features for
Radiomics

Textural Features

Plot features will be obtained from manually seg-
mented ROIs on CT images. They will include first-or-
der features (mean, mode, median, standard devia-
tion (std), median absolute deviation (MAD), range,
kurtosis, skewness, and interquartile range (IQR)
and second-order characteristics. For the latter,
bandpass, wavelet, isotropic resampling, discre-
tisation length corrections and different quanti-
sation tools will be implemented. The first three
sets are based on the grey-level co-occurrence
matrix (GLCM), the grey-level run-length matrix
(RLM), and the size zone matrix (SZM), all of which
belong to the family of statistical matrices. Once
these matrices have been constructed, it is possi-
ble to derive texture features (such as Haralick fea-
tures and moments).

To improve robustness, advanced techniques like
bandpass filtering, wavelet transformations, isotro-
pic resampling, and quantisation corrections will
be applied. Multi-grey-level SZM variants will also
be utilised to compute texture features across var-
ious quantisation levels, combining the results using
weighted averages to enhance sensitivity to subtle
texture variations.
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The formula for calculating the multi-gray-level SZM
is as follows:

MSZMy(s,g) = stksz Mf(s.g)

The integration of these features enables detailed
and multi-scale texture characterisation, optimising
the ability to differentiate and classify lung lesions
in CT imaging, even across diverse morphological
and pathological presentations.

Morphological Features

A set of morphological features will be considered,
including mean radial length, radial length entropy,
irregularity, diameter, circularity, compactness,
smoothness, roughness, rectangularity, convexity,
eccentricity, and eulogy.

Classification Methods

Classification involves assigning an individual (such
as a lesion or patient) to a specific class based on
extracted features. This is done using a feature vec-
tor x = [x(1),x(2), ... x(N)], where the classifier assigns
the individual to one of K possible classes.
The process includes several steps:
- Choosing the Classification Criterion:
This decision (linear or nonlinear) depends on the
problem and the available data.
- Training:
The classifier is trained on a data subset, typi-
cally using supervised learning with cross-vali-
dation techniques.
- Validation:
The classifier's performance is tested on a sepa-
rate dataset to evaluate its generalisation ability.

The performance of a classifier depends on the com-
bination of features, algorithms, and training meth-
ods used. Inrecent years, deep learning techniques
have gained popularity for their ability to identify
critical features from large datasets automatically.
eeThe following sections examine some of the most
popular classification techniques and methods. In
this study, all currently available techniques will be
applied with the aim of finding the best combina-
tion in terms of classification performance.

Classifier Types

Classification techniques can be essentially divided
into linear and nonlinear. Linear techniques adopt a
linear combination (sum) of features to try to classify
the individual. Such techniques (e.g., Linear Discrim-
inant Analysis, LDA) are helpful when features are

chosen such that the problem is linearly separable.
More often, the problem is not linearly separable,
and therefore nonlinear techniques (such as neural
networks, k-nearest-neighbours, and support vector
machines) are more useful. Trees are a special type
of nonlinear classifier that is based on successive
dichotomous processes. At each step, the algorithm
creates a binary separation, and each leaf is further
divided into two at the next step. This type of algo-
rithm is generally chosen for its ‘human’ comprehen-
sibility. Dichotomies are binary decisions of the yes/
no type on individual features, and thus their inter-
pretation is transparent. In contrast, classification
rules generated by linear or nonlinear algorithms
are generally not understandable.

Cross-Validation

Cross-validation is an essential aspect of classifier
training and aims to reduce possible overfitting, i.e.,
the tendency of training to select parameters that
make the classifier very good at classifying individ-
uals used as a training set, while the ability to gen-
eralise, i.e., classify individuals not belonging to the
training set, is limited. This issue is related to the
fact that, often, as in the present case, it is not pos-
sible to examine a significant sub-population that is
representative of the entire population (all possible
breast cancers, in this case). Therefore, it is neces-
sary for the classifier to be able to have reasonable
performance on the entire population.

Evaluation Metrics

Performance metrics for classifiers will include stan-
dard measures like True Positives, False Positives,
ROC curves, and confusion matrices. For binary clas-
sifiers, the confusion matrix provides insight into
misclassifications; for multi-class classifiers, more
complex metrics are used.

Implementation in the Present Protocol

All pre-processing, DICOM image handling, and fea-
ture extraction will be conducted using Matlab (The
MathWorks Inc., Natick, MA) or R (R Core Team,
2018). Matlab is widely used for scientific data pro-
cessing and classification. At the same time, Ris an
open-source statistical analysis tool that has grown
to support advanced techniques in machine learn-
ing and radiomics.

Statistical Analysis

The characteristics of the study population and other
relevant variables will be described using the appro-
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priate descriptive statistics for both continuous and
categorical data.

Data will be presented with absolute frequencies
and percentages, reporting the respective confi-
dence limits. The mean and standard deviation will
be reported for discrete parameters, following a
Gaussian curve. Medians and interquartile ranges
will be reported in cases where parameters are not
distributed according to a Gaussian curve. Paramet-
ric and nonparametric tests for paired and unpaired
data will be used, regardless of whether the data
distribution is Gaussian or non-Gaussian, to detect
statistically significant differences between groups.
For continuous variables, the difference between
median values for different groups will be calcu-
lated and tested using a two-sided Student t-test
(if the differences are normally distributed) or the
Mann-Whitney test (if the differences are gener-
ally not distributed. Assessment of inter-observer
variability will be performed by calculating Cohen'’s
Kappa index. Mixed-effects regression models will
adjust for covariates in longitudinal data. Multivari-
ate analysis, including linear classifiers, support vec-
tor machines, and decision trees, will explore fea-
ture combinations to optimise classification accu-
racy of lung lesions.

A p-value <0.05 will indicate statistical significance,
with Bonferroni correction for multiple comparisons.
Analyses will use Matlab Statistics Toolbox and R.

DISCUSSION

Precision medicine enables the targeted treatment
of LC, including stage lll, by applying multimodal
omic strategies tailored to individual groups based
on their genetics (34, 36).

Radiogenomics aims to correlate imaging pheno-
types with gene and epigenetic modifications. Radio-
mics has recently emerged as a promising tool
for discovering new imaging biomarkers. It can be
applied to any field of diagnostic imaging and is
used in various clinical settings. Radiogenomics is
a specialised evolution of oncology radiomics that
utilises imaging capabilities to non-invasively iden-
tify or predict tumour-specific genomic alterations
(37-38).

The biopsy of the suspected cancer is today the gold
standard for the characterisation of LC. However, it
is expensive, invasive and evaluates only the sam-
pled section of a heterogeneous tumour. The appli-
cative and ambitious goal of the present study is
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to develop a new protocol and mathematical algo-
rithm based on the imaging of the entire tumour or
of a multifocal tumor load in a single patient, with
the possibility of providing a non-invasive diagnosis
correlating also the data derived from liquid biopsy
on the gene mutations and epigenetic changes of
the tumour.

Currently, there is no universal image acquisition
protocol and no structured reporting standards (39)
The method and application of the structured report
could be adopted as a reporting method not only in
LC but more generally in all cancers. The algorithm
derived from the present study should be validated
by scientific agencies and societies to transfer the
obtained diagnostic procedures into the clinical set-
ting and real-world practice.

Suppose the goals of the present project are suc-
cessful. In that case, they will result in a significant
reduction of health system expenses, allowing for
highly personalised LC treatment and enabling ear-
ly-stage diagnosis, thereby avoiding unnecessary
treatments.

All this would bring enormous benefits to patients
in terms of quality of life and social and productive
contribution.
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