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ABSTRACT: Generative artificial intelligence (GAI) applied to clinical diagnostics and research is reshaping the panorama of precision
oncology. Combining hematoxylin-eosin-stained whole slide images with computational algorithms opens new avenues in digital
pathology. GAl allows for extracting molecular, immunological, and prognostic information based on routinely processed histological
sections and removes the need for additional molecular testing.

In oncology, GAI models excelled in cancer histotyping, malignancy ranking, molecular profiling, identification of prognostic and
predictive biomarkers, and inference of immune gene signatures. The latest foundational models provide additional opportunities
to develop generalizable, scalable tools that can be consistently leveraged in line with pathology missions.

However, several challenges must still be addressed to optimize GAI performance and encourage its clinical application. These
include data quality, algorithm bias, generalizability across institutions, and validation through robust multicenter trials. This strategy
is crucial for increasing clinical confidence, ensuring reproducibility, and facilitating the routine use of Al in precision oncology.
This review focuses on the operational application of computational pathology within the broader context of precision oncology. It
addresses the most significant technical innovations in biomarker assessment and critically examines the priorities to enhance the
reliability, scalability, and performance of Al-driven tools in precision oncology.
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digital histopathology offers novel strategies for biomarker iden-

tification and tumor classification, advancing precision oncology

and diagnostic accuracy.

Received: May 16, 2025/Accepted: Jun 27, 2025

Published: Oct 14, 2025

130 © 2025 Annals of Research in Oncology - ARO. Published by EDRA SpA. All rights reserved.


mailto:pi.ziranu@gmail.com

Vol. 5(3), 130-143, 2025

INTRODUCTION

Histology is regarded as the gold standard for diag-
nosing human diseases, including cancer (1). In recent
years, the rapid emergence of artificial intelligence
(Al)-driven models in digital and computational
pathology (2) has revolutionized cancer histopa-
thology, significantly advancing both cancer research
and clinical oncology (3, 4).

The integration of Al into surgical pathology is accel-
erating progress across various oncological domains,
including cancer subtyping (5), survival prediction
(6), and detection of nodal metastasis (7). More-
over, deep learning (DL) models have shown the
ability to identify clinically relevant genetic alter-
ations, such as microsatellite instability (MSI) (8) and
multiple gene mutations (9), from hematoxylin and
eosin-stained (H&E) sections (10, 11). Furthermore,
Al-based tools have been developed in oncology,
such as grading in prostate cancer (12) and, more
recently, predicting DNA methylation profiles from
histology sections (13).

In this review, we describe the emerging role of
artificial intelligence in oncology, with a particular
focus on computational histopathology (Figure 1).
We aim to highlight the transformative potential of
Al-driven models in shaping the future of precision
oncology, ultimately supporting more accurate and
high-quality cancer diagnoses.

THE INTRODUCTION OF
SCANNERS IN PATHOLOGY
DEPARTMENTS: THE ROLE OF
WHOLE-SLIDE IMAGES (WSIS) IN
COMPUTATIONAL PATHOLOGY

The introduction of slide scanners for digitizing glass
slides in pathology, along with the growing use of Al
for research and diagnostics, signifies a pivotal shift
in precision oncology. Despite the promise of Al in
clinical workflows, several challenges persist (14).
Adopting new technologies often necessitates
rethinking established practices. In pathology, slide
scanners gradually replace the optical microscope,
the pathologist's primary tool, with digital workflows.
Routine slide digitization generates WSIs of cancer-
ous tissues, serving as a crucial entry point for incor-
porating digital tools in diagnostics (15).

WSl technology enables the application of machine
learning (ML) and dep learning (DL) algorithms to
histopathological images, allowing for clinically rele-
vant data extraction to aid in cancer diagnosis, prog-
nosis, and treatment decisions (16-18). The broader
implementation of WSI is expected to significantly
influence diagnostic pathology, facilitating Al-sup-
ported precision diagnosis (19).

In oncology, DL algorithms have shown the capability
to extract vital information from H&E-stained WSlIs
alone, such as tumor classification and treatment
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Figure 1. Workflow of Al-Based Computational Pathology for Precision Oncology.
Machine learning and deep learning models extract molecular and prognostic insights from H&E-stained whole slide images, supporting
clinical interpretation and outcome prediction. H&E = Hematoxylin and Eosin; WSI = whole-slide images; Al = Artificial Intelligence.
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selection (20), metastatic potential prediction (21),
and identifying primary sites in cancers of unknown
origin (22). Moreover, WSIs allow the extraction of
molecular-level data, including immunohistochemical
and histochemical markers, directly from H&E slides.
This includes predictions of PD-L1and PD-1 expres-
sion (23) and mutational status across cancer types

(24-26). Such tools could soon offer fast, cost-effec-
tive methods to inform personalized treatments.

The integration of slide scanners and routine WSI
use, combined with Al-driven models, presents a sig-
nificant opportunity for both healthcare institutions
and research centers (27). Digital pathology through
WSI technology has the potential to transform can-

Table 1. Summary of published studies applying Al models to histopathology for biomarker prediction and clinical tasks.

STUDY YEAR | CANCER TYPE/TASK | AIMETHODOLOGY |  MAINFINDINGS | REF. |

NSCLC - mutation

Predicted mutations (EGFR,

Coudray et al. 2018 e CNN on H&E STK11, TP53, etc.) and PD-L1 (24)
classification
status
Colorectal - outcome Deep learning on DL model predicted
STl T 2020 prediction WSlIs prognosis with high AUC (©)
Kather et al. 2020 Pan-cqncer - actionable Al on H&E Detectgd multlple.genetlc (10)
mutations alterations from histology
Fu et al. 2020 Pan-cance.r.- mutation CNN on H&E Inferred mutgtlons, cell types (25)
& composition and prognosis
Breast - pathway Deep learning on Predicted mutations and
Queret 2021 prediction WSls signaling pathways (26)
Lu et al. 2021 Ca.ncer of unknown Al on H&E + weak P!’edlcted tissue of origin with (22)
primary supervision high accuracy
Saldanha et al. 2023 Pan-;arjcer - mutation Self-supervised DL AccuraFe predlc'Flon of (11)
prediction genomic alterations
Shamai et d. 202 Breast-PD-LI DL on H&E Al matched [HC PD-LT (52)
prediction expression
Wang et al. 2022 NSCLC - PD-L1 scoring  Multimodal DL AU MECE PreeleEel L= | o)
L1 & survival
van Eekelen etal. 2024 NSCLC - PD-L1 scoring  Cell-level DL A STEITEE [DEHTEr . (56)
reproducibility vs pathologists
. Pan-cancer (20 types) Multiple instance AUC 0.83 on >12k slides,
I &t 2. PD-L1 learning mRNA correlation (57)
. Colorectal - MSI Al-based MSI Validated model for MSI
Saillard et al. 2023 screening detection (MSIntuit)  prediction on H&E (36)
Multi-cancer - multi- Predicted mutations,
GirElEn e el 240722 omic prediction DIEClllakS expression, MSI, CNAs (37)
Pan-cancer - digital . Predicted multiple digital
Hieeeny aren A biomarkers Mk e ikele) biomarkers from WSIs ek
Nakatsuka et al. 2025 NASH - HCC prediction DL on liver biopsies Predlc.ted AICE el lopmeit (69)
years in advance
CNS tumors - DNA . Inferred methylation subtype
Hoang et al. 2024 methylation DL on histology from slides (13)
Amgad et dl. 2024 Breast - prognostic PppuIann-Ievel Created a histological . (75)
biomarker digital pathology biomarker for prognosis
Chen et al. 2024 Pan-cancer - general Foundation model Predicted 108 cancer types (78)

model

(UNI)

from WSils

Al = Artificial Intelligence, CNN = Convolutional Neural Network, DL = Deep Learning, H&E = Hematoxylin and Eosin, IHC = Immunohistochemistry,
ML = Machine Learning, MSI = Microsatellite Instability, NSCLC = Non-Small Cell Lung Cancer, PD-L1 = Programmed Death-Ligand 1,
PD-1= Programmed Cell Death Protein 1, WSI = Whole Slide Image, CNS = Central Nervous System, NASH = Non-Alcoholic Steatohepatitis,
HCC = Hepatocellular Carcinoma, CNA = Copy Number Alteration, mRNA = Messenger Ribonucleic Acid, MSI = Microsatellite Instability,
UNI = Universal foundation model for computational pathology, AUC = Area Under the Curve.
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cer diagnosis and research by converting conven-
tional slides into digital data, laying the groundwork
for computer-assisted diagnostics (28).

WSiIs provide the foundation for fully digitized pathol-
ogy workflows, backed by Al-powered decision-sup-
port systems. These tools leverage computational
histopathology to enhance diagnostic accuracy and
consistency (29). The ongoing digitalization of pathol-
ogy departments, alongside advances in ML and DL,
is poised to accelerate oncological research and fos-
ter the development of Al-assisted diagnostic tools
for various malignancies (30).

ML-MODELS ALLOW THE
PREDICTION OF MULTIPLE
BIOMARKERS FROM WHOLE SLIDE
HISTOPATHOLOGY IMAGES

One of the most intriguing aspects of Al in digital
pathology is its ability to predict multiple biomark-
ers, including mutation status, from H&E-stained
WSIs (2, 11). Recent Al-driven models can now pre-
dict diagnostic and predictive biomarkers such as
immunohistochemical, genetic, epigenetic, and in
situ hybridization markers. Traditionally, identifying
these biomarkers requires manual assessment by
trained pathologists, a time-consuming and costly
process that can delay diagnosis and treatment.
The progressive adoption of digital pathology has
been complemented by the development of an alter-
native approach, whereby Al models analyze rou-
tinely acquired H&E-stained WSlIs to extract multi-
ple predictive biomarkers. These include key molec-
ular features that are instrumental in-patient strat-
ification for targeted therapies (31-33). This para-
digm shift has revealed that H&E-stained sections,
long considered tools primarily for morphological
assessment, contain a rich reservoir of latent molec-
ular information.

WSIs can now support automated disease detection,
histological and molecular subtyping, and tumor
grading, as well as prognostic evaluation, survival
prediction, and treatment planning (33). Al models
trained on H&E-stained WSIs have demonstrated
the ability to predict a range of molecular biomark-
ers across different cancer types (34-36). Addition-
ally, emerging studies suggest that WSIs may also
be used to infer other molecular alterations, such as
RNA expression patterns and protein abundance (37).
While initial efforts focused on models trained to
predict a single biomarker in a specific cancer type,

newer frameworks now predict multiple biomarkers,
including copy number alterations and RNA-derived
signatures, across various malignancies (38). These
findings emphasize the vast, clinically relevant data
embedded in standard H&E-stained slides. Table 1
provides an overview of significant studies utilizing
Al for biomarker prediction, tumor classification,
and outcome forecasting across diverse cancers.
Given the widespread use of H&E-stained slides
in pathology laboratories globally, digitizing these
images could enable the deployment of Al-driven
biomarker prediction models even in low-resource
settings, potentially benefiting a broader patient
population.

DL-MODELS APPLIED TO THE
PREDICTION OF PD-1 AND PD-L1
EXPRESSION BASED ON H&E-
STAINED SECTIONS

The immune system maintains a balance between
eliminating harmful pathogens and preserving
self-tolerance, regulated by immune checkpoints
like PD-1(39). PD-1, a key checkpoint receptor, mod-
ulates T-cell activity to maintain peripheral toler-
ance, preventing autoimmune responses (40, 41).
The identification of PD-1 and its ligand PD-L1 in
tumor cells, first reported in 2002, unveiled a criti-
cal mechanism of immune evasion by which tumors
exploit immune checkpoint pathways to evade
immune surveillance (42). PD-L1 is predominantly
expressed on the surface of tumor cells but can
also be released in the tumor microenvironment via
exosomes, amplifying immune suppression (43, 44).
Given its role in promoting tumor immune escape,
PD-L1 has become a major target in cancer immu-
notherapy (45-48).

Traditionally, PD-L1 expression is assessed through
immunohistochemistry (IHC), which remains the
standard in clinical practice (49-51). However, despite
its widespread use, IHC presents several challenges:
it is time-consuming, costly, and may deplete limited
tissue samples, particularly in small biopsies. Fur-
thermore, interpretation of PD-L1 staining is prone
to significant variability due to differences in stain-
ing protocols, subjective interpretation of staining
intensity, and interobserver variability, especially
in borderline cases (52, 53). This inconsistency can
critically impact clinical decision-making, potentially
misclassifying patients and affecting their eligibility
for immune checkpoint inhibitors.
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Digital pathology and Al-driven models offer a prom-
ising alternative, providing a more standardized and
reproducible assessment of PD-L1 expression by ana-
lyzing WSIs across multiple tumor regions (54). Unlike
manual scoring, Al models can systematically quan-
tify PD-L1 expression across heterogeneous tumor
regions, reducing variability and enhancing diag-
nostic accuracy. For instance, Al algorithms applied
in lung cancer demonstrated high accuracy in pre-
dicting PD-L1 status, aligning closely with patholo-
gist assessments even in challenging cases (55, 56).
A pivotal study by Jin et al. introduced a pan-can-
cer Al model capable of predicting PD-L1 expres-
sion directly from H&E-stained WSlIs, analyzing over
12,000 slides from 20 tumor types and achieving a
mean area under the curve (AUC) of 0.83 (57). The
model’s predictions were validated against conven-
tional IHC and mRNA expression, underscoring the
potential of Al to standardize biomarker assessment
and minimize interobserver variability.

Table 2 summarizes selected studies comparing
Al-based digital pathology approaches with conven-
tional immunohistochemistry for PD-L1assessment
across different tumor types.

This shift toward Al-driven PD-L1 evaluation reflects
the emerging paradigm of “intelligent digital pathol-
ogy”, where Al augments conventional diagnostics,
potentially accelerating therapeutic decision-mak-
ing, expanding access to precision oncology, and
ensuring more consistent biomarker assessment
across diverse clinical settings (32, 58, 59).

The clinical integration of this approach is partic-
ularly relevant in the context of therapeutic deci-
sion-making. By predicting multiple biomarkers,
including immune checkpoint-related proteins and
mutational profiles, from routine H&E-stained slides,
Al-driven pathology can guide the selection of tar-
geted therapies or immunotherapies. For instance,
in advanced non-small cell lung cancer or gastric can-
cer, accurate prediction of PD-L1 expression or MSI
status directly from histology can streamline treat-
ment eligibility decisions and reduce dependence on
costly or time-consuming molecular assays (24, 36,
52, 55, 57). Additionally, in multidisciplinary oncol-
ogy settings, integrating Al-generated outputs into
tumor board discussions may enhance personal-
ized care planning, particularly when biopsy mate-
rial is limited or when rapid turnaround is needed.

Table 2. Comparison between immunohistochemistry (IHC) and Al-based digital pathology for PD-L1 assessment.

FEATURE IMMUNOHISTOCHEMISTRY AI-BASED DIGITAL PATHOLOGY
(IHC) (ON H&E WSIS)

Sample
requirement

Requires additional antibody-based
staining

Tissue
consumption

Consumes precious tissue, critical in
small biopsies

High costs due to antibodies,

Ses reagents, and specialized equipment

Turnaround Time-consuming due to staining and

time manual interpretation

Expertise Requires experienced pathologists

required for accurate interpretation

Interpretation High inter- and intra-observer

variability variability

Accessibility Often unava|lable. in peripheral or
low-resource settings

Multiplexing  Generally limited to one biomarker

capability per slide

Moleculfar Direct protein expression detection

correlation

Scalability and

: Manual, slow, and hard to scale
automation

Uses routine H&E-stained slides already  (49-51)/
available in pathology labs (24, 57)
No additional tissue required; preserves  (52)/
material for other tests (23/37)
Lower long-term costs after digitization (53)/
infrastructure is in place (24, 57)
Faster analysis after digitization and (52)/
model deployment (23, 55, 57)
Al supports interpretation; reduces (52, 53)/
reliance on specialist expertise (54, 56)
Provides standardized, reproducible (53)/
results (54, 56)
H&E-based Al tools are scalable and (52)/
suitable for resource-limited contexts (24, 57)
Potential to predict multiple biomarkers  (49-51)/
from a single H&E image (25, 26, 36-38)
Can predict mRNA expression, mutation  (50)/
status, and other molecular features (37, 38, 57)
Fully automatable and scalable across (52)/

large datasets (23, 54, 57)

IHC = Immunohistochemistry, Al = Artificial Intelligence, H&E = Hematoxylin and Eosin, WSI = Whole Slide Image, mRNA = Messenger

Ribonucleic Acid.
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DEEP LEARNING APPLIED TO
DIGITAL PATHOLOGY IN THE
PREDICTION OF HCC

Non-alcoholic steatohepatitis (NASH), a progressive
form of non-alcoholic fatty liver disease (NAFLD),
is now recognized as the leading cause of chronic
liver disease and a key risk factor for hepatocel-
lular carcinoma (HCC) (60). Histologically, NASH is
marked by macrovesicular steatosis, lymphocytic
infiltration, hepatocellular ballooning, apoptotic
bodies, and varying degrees of fibrosis (61). Tra-
ditionally, fibrosis has been considered the stron-
gest predictor of adverse outcomes, including cir-
rhosis and HCC (62, 63). However, over 50% of
NASH-related HCC cases arise in non-cirrhotic liv-
ers, indicating that other histological and molec-
ular features beyond fibrosis may drive carcino-
genesis (64, 65).

Recent Al-based models have been applied to
the automated assessment of liver fibrosis and
other NASH-related histological changes, demon-
strating ML techniques’ key advantage in provid-
ing objective, quantitative evaluations that reduce
interobserver variability and support more consis-
tent longitudinal disease monitoring (66, 67). DL
approaches, in particular, have shown significant
promise in identifying subtle histological markers
associated with early carcinogenesis that may be
missed in conventional assessments, extending
predictive capabilities beyond fibrosis and nodu-
lar regeneration (68).

A significant study by Nakatsuka et al. explored a
DL model to predict HCC development using only
H&E-stained WSIs of liver biopsies from steatosis
patients (69). The model aimed to identify individu-
als at higher HCC risk solely based on liver steatosis
analysis, achieving an AUC of 0.80 for predicting HCC
onset within seven years post-biopsy. Notably, the
model identified at-risk patients without advanced
fibrosis, underscoring the role of additional histo-
logical features in liver tumorigenesis.

Through saliency map analysis, the model highlighted
key predictors of HCC development, including a high
nuclear-to-cytoplasmic ratio, nuclear atypia, lym-
phocytic infiltrates, and the absence of large lipid
droplets. These findings suggest that Al models can
detect subtle histological changes predictive of liver
cancer risk in routine biopsies, potentially without
expensive molecular assays (69).

This work emphasizes two critical points: first, Al
algorithms can extract complex histological signals

indicative of future disease progression; second,
integrating Al with digital pathology, or computa-
tional pathology (CPath), may revolutionize liver his-
topathology by enhancing diagnostic accuracy, aid-
ing prognostic stratification, and supporting preven-
tive strategies in NASH-related HCC (69).

TOWARDS A GENERAL
FOUNDATION MODEL FOR
COMPUTATIONAL PATHOLOGY

In routine clinical practice, pathologists are responsi-
ble for a broad spectrum of diagnostic tasks, includ-
ing cancer detection, subtyping, grading, and stag-
ing. These tasks require consideration of thousands
of potential differential diagnoses. To address these
challenges, a wide range of Al models have been
developed in recent years, particularly within the
domains of digital and computational pathology (70,
71). Among the most promising innovations is the
development of Al-driven models capable of multi-
modal data integration, which should combine clin-
ical, genomic, epigenomic, radiomic, pathomic, and
microbiological data to provide a more comprehen-
sive view of the oncologic landscape (72). Compu-
tational pathology (CPath) has demonstrated the
potential to predict molecular alterations directly
from histopathological images, including microsat-
ellite instability (MSI) (8, 73, 74), patient prognosis
(75), and treatment response (76). However, most
of these models are trained for a specific cancer
type and are limited to predicting a narrow set of
molecular or immunohistochemical features, which
restricts their applicability in diverse clinical con-
texts. To overcome these limitations, a new class
of Al tools has emerged: multi-cancer, multi-bio-
marker models designed to simultaneously pre-
dict a wide range of molecular alterations across
various tumor types using standard H&E-stained
slides (39). These systems, defined as “foundation
models,” are characterized by their scalability, ver-
satility, and adaptability to multiple diagnostic tasks
and cancer types (77). In this direction, a gener-
al-purpose foundation model for computational
pathology, defined as UNI, has been recently intro-
duced by Chen TJ and colleagues (78). Pretrained
on over 100 million images, the UNI model demon-
strated the capacity to classify up to 108 cancer
types, marking a significant advancement toward
the integration of Al into routine workflows in ana-
tomic pathology Labs.
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COMPUTATIONAL PATHOLOGY IN
ONCOLOGY

Artificial intelligence has emerged as a revolution-
ary tool for the discovery of predictive biomark-
ers in human cancers. Al-based methods are rede-
fining the landscape for researchers, pathologists,
and oncologists, demonstrating the potential of
well-trained algorithms to extract clinically rele-
vant molecular information directly from routinely
stained H&E sections.

When applied to clinical practice, the advantages
of this paradigm shift are numerous. One of the
most significant is the speed of analysis: the aver-
age computational time to generate a PD-L1 prob-
ability map has been reported at approximately 40
seconds, with a range from 7.9 to 66 seconds (79).
This indicates that, with a robust and validated DL
model, pathologists could provide near-instanta-
neous estimates of PD-L1 expression, facilitating
timely and personalized therapeutic decisions for
oncologists (87).

In addition to rapidity, Al-based approaches offer
substantial cost-saving opportunities. The reliance on
conventional immunohistochemistry, dependent on
specialized reagents, equipment, and trained person-
nel, may be significantly reduced or even replaced.
The possibility of identifying genes and immune-re-
lated biomarkers, such as PD-L1, directly from H&E
sections without antibody-based detection opens
intriguing transformative possibilities, particularly
for decentralized and resource-limited settings.
Furthermore, Al-driven histopathological analy-
sis enables the extraction of novel insights beyond
PD-L1 expression, potentially enhancing clinical deci-
sion-making. Immune pathology, a key founda-
tion for immune checkpoint inhibitor (ICl) thera-
pies, remains a relatively underexplored area within
diagnostic pathology. Al methodologies could facil-
itate the identification of novel “metabiomarkers”,
complex, integrative features predictive of ICl ther-
apy response (82). This hypothesis is supported by
recent evidence showing that DL models can pre-
dict immune and inflammatory gene signatures in
hepatocellular carcinoma directly from histologi-
cal images (83).

Taken together, these findings underscore the poten-
tial of Al, particularly DL algorithms, to extract multi-
ple molecular and immunological biomarkers from
standard histology, enabling the discovery of novel
predictive features and advancing the goals of pre-
cision oncology. Computational pathology (also
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referred to as pathomics) thus represents a unique
opportunity: to serve as a rapid, cost-effective, and
integrative diagnostic tool for clinicians, oncolo-
gists, and surgeons alike, delivering morphologi-
cal, genetic, and molecular data in near real time.
Another major strength of computational pathology
lies in its ability to generate large-scale datasets of
digitized slides, which can be integrated with com-
plementary clinical (real-world data), genomic, epig-
enomic, microbiologic, radiologic (radiomics), and
laboratory information. This multimodal integra-
tion offers the potential to define novel metabio-
markers, which can outperform unimodal mod-
els in terms of predictive accuracy, as measured by
improved AUC metrics (76).

Moreover, computational pathology can address a
long-standing challenge in diagnostic histopathol-
ogy: interobserver variability. This is particularly rel-
evant for PD-L1 scoring, which is known to vary sig-
nificantly among both expert and generalist pathol-
ogists (84-86). While DL models can provide more
consistent and standardized assessments of PD-L1
expression, their capacity to directly infer molecular
and transcriptomic features from histology offers a
far more transformative leap than simply resolving
variability issues.

For successful adoption in clinical practice, Al-based
computational pathology systems must be inte-
grated into existing digital workflows within pathol-
ogy departments. This includes embedding Al mod-
els into slide viewers and laboratory information sys-
tems (LIS), allowing pathologists to access real-time
predictions directly from digitized H&E slides. Addi-
tionally, the deployment of Al tools should be sup-
ported by intuitive, clinician-oriented interfaces that
facilitate interpretation and integrate seamlessly into
the diagnostic process. Real-world implementation
also requires rigorous prospective validation stud-
ies and standardized protocols to demonstrate clin-
ical utility. Importantly, Al-driven solutions should
be designed to complement rather than replace
human expertise, acting as decision-support tools
that enhance diagnostic accuracy, reproducibility,
and efficiency in oncology care.

NEXT CHALLENGES

Along with its unquestionable advantages, the
real-world implementation of computational his-
tology entails several major issues that need to be
addressed before Al models can be safely and effec-
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tively integrated into clinical practice, particularly
within the field of immuno-oncology. The major
current limitations hindering clinical implementa-
tion are summarized below:

1. Data Quality and Availability: robust algorithm
performance requires access to large volumes of
high-quality, well-annotated data. However, onco-
logic datasets are often incomplete, heterogeneous,
biased, and inherently complex, limiting model gen-
eralizability and reproducibility.

2. Model Selection Complexity: the proliferation of
ML and DL algorithms, often promoted through mar-
keting strategies emphasizing innovation rather than
practical limitations and clinical safety, can make it
challenging for researchers and clinicians to select
the most appropriate model for specific applica-
tions. While advanced DL models are widely mar-
keted as cutting-edge solutions, classical ML mod-
els may outperform them in low-data scenarios and
should not be overlooked, particularly when sam-
ple sizes are limited (87).

3. Regulatory Certification: certification is a critical
prerequisite for clinical adoption. At present, there
is no universally accepted regulatory pathway for
the validation and certification of Al-based tools in
pathology. The establishment of worldwide (or at
least continental-wide) standardized, harmonized
processes for model certification should be encour-
aged to ensure safety and efficacy.

4. Lack of Guidelines and Protocols: clear proto-
cols and guidelines for conducting rigorous, clini-
cally meaningful studies on Al model applicability
are currently lacking. This gap hinders reproduc-

ibility and delays the translation of research find-
ings into clinical practice.

5. Lack of Trust and Interpretability: a significant
barrier to clinical implementation is the skepticism
among healthcare professionals, including patholo-
gists, regarding the reliability and transparency of Al
tools. Improving model interpretability is essential
to foster trust. Techniques from the field of explain-
able artificial intelligence (XAl) may help to demystify
algorithmic decision-making and reduce the “black
box" effect (88, 89).

6. Insufficient External Validation: Al models that
perform well on internal datasets often fail when
applied to external, real-world data. To ensure clin-
ical robustness, models should be validated using
diverse, multi-institutional datasets. One proposed
strategy is divergent validation, which evaluates
model performance across various independent
datasets to enhance generalizability and transpar-
ency (90, 91).

6. Bias and Variability: algorithmic biases can result
from inconsistencies in slide staining, errors in label-
ing the data sets used for training, scanner calibra-
tion, or demographic imbalances in training data.
These factors can significantly impair model perfor-
mance and reliability. Reducing such biases is cru-
cial to enable fair and accurate deployment of Al
models in clinical settings.

Despite these several interconnected limitations,
the primary obstacle hindering the widespread
use of Al strategies in clinical practice is the lack of
standardized and universally accepted pathways
for validation and certification. Without clear regu-

Table 3. Current challenges and proposed solutions for the clinical integration of Al in computational pathology.

CHALLENGE DESCRIPTION SUGGESTED SOLUTIONS | REF. |

Data Quality Incomplete, biased,

Model Selection
models

Certification
pathways

heterogeneous datasets
Difficult choice among ML/DL

Lack of standard regulatory

Centralized data curation and

Lack of clinician trust due to

Trust and Interpretability black-box nature

Interobserver Variability (e.g., PD-L1 scoring)

External Validation datasets

Staining and demographic biases

Variability in human assessment
Limited generalizability across

Bias in data acquisition and
population representation

federated learning (1,92)
Model comparison guidelines, (89)
model benchmarking

International consensus on Al

model validation

XAl, transparent algorithms (90-91)
Algonthm.lc stqndard|zat|on, (86-88)
model calibration

Multi-institutional validation, (90-91)

divergent validation

Dataset balancing, domain
adaptation techniques

ML = Machine Learning, DL = Deep Learning, Al = Artificial Intelligence, PD-L1 = Programmed Death-Ligand 1, XAl = Explainable Artificial

Intelligence.
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latory guidance and robust multicenter validation
studies, many Al-based models remain restricted to
research settings. This uncertainty, coupled with a
lack of transparency in algorithmic outputs, contin-
ues to undermine clinician trust and delays the full
integration of Al into routine oncologic diagnostics.
The key limitations currently hindering the imple-
mentation of Al in clinical workflows, along with pro-
posed solutions, are summarized in Table 3.

CONCLUSIONS

The introduction of Al-driven models has triggered
a true revolution in oncology, with applications
spanning from the interpretation of medical imag-
ing to the enhancement of diagnostic and prognos-
tic accuracy, including prediction of overall survival
and response to various therapeutic strategies (92).
Among these tools, convolutional neural networks
(CNNs) have emerged as indispensable new tools
for the recognition and classification of both histo-
logical and radiological images. CNNs can detect
subtle and complex patterns that may escape even
the most experienced pathologists and radiologists.
A key strength of CNNs lies in their ability to auton-
omously learn from data, particularly when trained
on large, high-quality datasets. This has enabled
a shift from traditional machine learning towards
deep learning in medical image analysis. CNNs have
demonstrated outstanding performance in tasks
such as cancer detection, histological classification,
and subtype recognition.

More recently, advanced CNN-based architectures
have achieved notable success in cancer diagnostics.
For instance, CNNs combined with Long Short-Term
Memory (LSTM) networks have shown promise in
predicting cancer prognosis by capturing temporal
patterns in patient data. Spatially Constrained CNNs
(SC-CNNs) have proven effective for nuclei classifi-
cation in colorectal cancer, enhancing precision in
histopathological assessment. Moreover, the inte-
gration of CNNs with Fourier Transform Infrared
(FTIR) spectroscopy has yielded promising results
for accurate cancer detection in biopsy specimens.
Taken together, these developments highlight the
transformative role of Al in advancing precision
oncology, in which context pathology assumes a piv-
otal role. Manual interpretation of medical images
remains susceptible to human error and interob-
server variability. In this context, Al-based method-
ologies, particularly those leveraging CNNs, offer

138

robust solutions to improve diagnostic consistency
and uncover patterns beyond human perception.
These innovations pave the way for more refined,
data-driven approaches to cancer detection, classifi-
cation, and treatment selection, ultimately support-
ing the realization of a truly personalized oncology.
This constellation of technological advancements fos-
ters a more data-driven, patient-centered approach
to precision oncology. It creates a new medical uni-
verse that aligns with tailored cancer care’s ethical
and scientific mission. Pathology plays a pivotal role
in this evolving “computational” landscape, echo-
ing the transformative impact once initiated by Vir-
chow’s microscope.
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