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ABSTRACT: Generative artificial intelligence (GAI) applied to clinical diagnostics and research is reshaping the panorama of precision 
oncology. Combining hematoxylin-eosin-stained whole slide images with computational algorithms opens new avenues in digital 
pathology. GAI allows for extracting molecular, immunological, and prognostic information based on routinely processed histological 
sections and removes the need for additional molecular testing.
In oncology, GAI models excelled in cancer histotyping, malignancy ranking, molecular profiling, identification of prognostic and 
predictive biomarkers, and inference of immune gene signatures. The latest foundational models provide additional opportunities 
to develop generalizable, scalable tools that can be consistently leveraged in line with pathology missions.
However, several challenges must still be addressed to optimize GAI performance and encourage its clinical application. These 
include data quality, algorithm bias, generalizability across institutions, and validation through robust multicenter trials. This strategy 
is crucial for increasing clinical confidence, ensuring reproducibility, and facilitating the routine use of AI in precision oncology.
This review focuses on the operational application of computational pathology within the broader context of precision oncology. It 
addresses the most significant technical innovations in biomarker assessment and critically examines the priorities to enhance the 
reliability, scalability, and performance of AI-driven tools in precision oncology.
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Impact statement: Generative artificial intelligence applied to 
digital histopathology offers novel strategies for biomarker iden-
tification and tumor classification, advancing precision oncology 
and diagnostic accuracy.
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INTRODUCTION
Histology is regarded as the gold standard for diag-
nosing human diseases, including cancer (1). In recent 
years, the rapid emergence of artificial intelligence 
(AI)-driven models in digital and computational 
pathology (2) has revolutionized cancer histopa-
thology, significantly advancing both cancer research 
and clinical oncology (3, 4).
The integration of AI into surgical pathology is accel-
erating progress across various oncological domains, 
including cancer subtyping (5), survival prediction 
(6), and detection of nodal metastasis (7). More-
over, deep learning (DL) models have shown the 
ability to identify clinically relevant genetic alter-
ations, such as microsatellite instability (MSI) (8) and 
multiple gene mutations (9), from hematoxylin and 
eosin-stained (H&E) sections (10, 11). Furthermore, 
AI-based tools have been developed in oncology, 
such as grading in prostate cancer (12) and, more 
recently, predicting DNA methylation profiles from 
histology sections (13).
In this review, we describe the emerging role of 
artificial intelligence in oncology, with a particular 
focus on computational histopathology (Figure 1). 
We aim to highlight the transformative potential of 
AI-driven models in shaping the future of precision 
oncology, ultimately supporting more accurate and 
high-quality cancer diagnoses.

THE INTRODUCTION OF 
SCANNERS IN PATHOLOGY 
DEPARTMENTS: THE ROLE OF 
WHOLE-SLIDE IMAGES (WSIS) IN 
COMPUTATIONAL PATHOLOGY
The introduction of slide scanners for digitizing glass 
slides in pathology, along with the growing use of AI 
for research and diagnostics, signifies a pivotal shift 
in precision oncology. Despite the promise of AI in 
clinical workflows, several challenges persist (14).
Adopting new technologies often necessitates 
rethinking established practices. In pathology, slide 
scanners gradually replace the optical microscope, 
the pathologist’s primary tool, with digital workflows. 
Routine slide digitization generates WSIs of cancer-
ous tissues, serving as a crucial entry point for incor-
porating digital tools in diagnostics (15).
WSI technology enables the application of machine 
learning (ML) and dep learning (DL) algorithms to 
histopathological images, allowing for clinically rele-
vant data extraction to aid in cancer diagnosis, prog-
nosis, and treatment decisions (16-18). The broader 
implementation of WSI is expected to significantly 
influence diagnostic pathology, facilitating AI-sup-
ported precision diagnosis (19).
In oncology, DL algorithms have shown the capability 
to extract vital information from H&E-stained WSIs 
alone, such as tumor classification and treatment 

Figure 1. Workflow of AI-Based Computational Pathology for Precision Oncology. 
Machine learning and deep learning models extract molecular and prognostic insights from H&E-stained whole slide images, supporting 
clinical interpretation and outcome prediction. H&E = Hematoxylin and Eosin; WSI = whole-slide images; AI = Artificial Intelligence.
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selection (20), metastatic potential prediction (21), 
and identifying primary sites in cancers of unknown 
origin (22). Moreover, WSIs allow the extraction of 
molecular-level data, including immunohistochemical 
and histochemical markers, directly from H&E slides. 
This includes predictions of PD-L1 and PD-1 expres-
sion (23) and mutational status across cancer types 

(24-26). Such tools could soon offer fast, cost-effec-
tive methods to inform personalized treatments.
The integration of slide scanners and routine WSI 
use, combined with AI-driven models, presents a sig-
nificant opportunity for both healthcare institutions 
and research centers (27). Digital pathology through 
WSI technology has the potential to transform can-

Table 1. Summary of published studies applying AI models to histopathology for biomarker prediction and clinical tasks.

STUDY YEAR CANCER TYPE/TASK AI METHODOLOGY MAIN FINDINGS REF.

Coudray et al. 2018 NSCLC – mutation 
classification CNN on H&E

Predicted mutations (EGFR, 
STK11, TP53, etc.) and PD-L1 
status

(24)

Skrede et al. 2020 Colorectal – outcome 
prediction

Deep learning on 
WSIs

DL model predicted 
prognosis with high AUC (6)

Kather et al. 2020 Pan-cancer – actionable 
mutations AI on H&E Detected multiple genetic 

alterations from histology (10)

Fu et al. 2020 Pan-cancer – mutation 
& composition CNN on H&E Inferred mutations, cell types 

and prognosis (25)

Qu et al. 2021 Breast – pathway 
prediction

Deep learning on 
WSIs

Predicted mutations and 
signaling pathways (26)

Lu et al. 2021 Cancer of unknown 
primary

AI on H&E + weak 
supervision

Predicted tissue of origin with 
high accuracy (22)

Saldanha et al. 2023 Pan-cancer – mutation 
prediction Self-supervised DL Accurate prediction of 

genomic alterations (11)

Shamai et al. 2022 Breast – PD-L1 
prediction DL on H&E AI matched IHC PD-L1 

expression (52)

Wang et al. 2022 NSCLC – PD-L1 scoring Multimodal DL Fusion model predicted PD-
L1 & survival (55)

van Eekelen et al. 2024 NSCLC – PD-L1 scoring Cell-level DL AI showed better 
reproducibility vs pathologists (56)

Jin et al. 2024 Pan-cancer (20 types) 
– PD-L1

Multiple instance 
learning

AUC 0.83 on >12k slides, 
mRNA correlation (57)

Saillard et al. 2023 Colorectal – MSI 
screening

AI-based MSI 
detection (MSIntuit)

Validated model for MSI 
prediction on H&E (36)

Arslan et al. 2022 Multi-cancer – multi-
omic prediction DL on H&E Predicted mutations, 

expression, MSI, CNAs (37)

McCaw et al. 2024 Pan-cancer – digital 
biomarkers ML on histology Predicted multiple digital 

biomarkers from WSIs (38)

Nakatsuka et al. 2025 NASH – HCC prediction DL on liver biopsies Predicted HCC development 
years in advance (69)

Hoang et al. 2024 CNS tumors – DNA 
methylation DL on histology Inferred methylation subtype 

from slides (13)

Amgad et al. 2024 Breast – prognostic 
biomarker

Population-level 
digital pathology

Created a histological 
biomarker for prognosis (75)

Chen et al. 2024 Pan-cancer – general 
model

Foundation model 
(UNI)

Predicted 108 cancer types 
from WSIs (78)

AI = Artificial Intelligence, CNN = Convolutional Neural Network, DL = Deep Learning, H&E = Hematoxylin and Eosin, IHC = Immunohistochemistry, 
ML = Machine Learning, MSI = Microsatellite Instability, NSCLC = Non-Small Cell Lung Cancer, PD-L1 = Programmed Death-Ligand 1, 
PD-1 = Programmed Cell Death Protein 1, WSI = Whole Slide Image, CNS = Central Nervous System, NASH = Non-Alcoholic Steatohepatitis, 
HCC = Hepatocellular Carcinoma, CNA = Copy Number Alteration, mRNA = Messenger Ribonucleic Acid, MSI = Microsatellite Instability, 
UNI = Universal foundation model for computational pathology, AUC = Area Under the Curve.



Vol. 5(3), 130-143, 2025

133

cer diagnosis and research by converting conven-
tional slides into digital data, laying the groundwork 
for computer-assisted diagnostics (28).
WSIs provide the foundation for fully digitized pathol-
ogy workflows, backed by AI-powered decision-sup-
port systems. These tools leverage computational 
histopathology to enhance diagnostic accuracy and 
consistency (29). The ongoing digitalization of pathol-
ogy departments, alongside advances in ML and DL, 
is poised to accelerate oncological research and fos-
ter the development of AI-assisted diagnostic tools 
for various malignancies (30).

ML-MODELS ALLOW THE 
PREDICTION OF MULTIPLE 
BIOMARKERS FROM WHOLE SLIDE 
HISTOPATHOLOGY IMAGES
One of the most intriguing aspects of AI in digital 
pathology is its ability to predict multiple biomark-
ers, including mutation status, from H&E-stained 
WSIs (2, 11). Recent AI-driven models can now pre-
dict diagnostic and predictive biomarkers such as 
immunohistochemical, genetic, epigenetic, and in 
situ hybridization markers. Traditionally, identifying 
these biomarkers requires manual assessment by 
trained pathologists, a time-consuming and costly 
process that can delay diagnosis and treatment.
The progressive adoption of digital pathology has 
been complemented by the development of an alter-
native approach, whereby AI models analyze rou-
tinely acquired H&E-stained WSIs to extract multi-
ple predictive biomarkers. These include key molec-
ular features that are instrumental in-patient strat-
ification for targeted therapies (31-33). This para-
digm shift has revealed that H&E-stained sections, 
long considered tools primarily for morphological 
assessment, contain a rich reservoir of latent molec-
ular information.
WSIs can now support automated disease detection, 
histological and molecular subtyping, and tumor 
grading, as well as prognostic evaluation, survival 
prediction, and treatment planning (33). AI models 
trained on H&E-stained WSIs have demonstrated 
the ability to predict a range of molecular biomark-
ers across different cancer types (34-36). Addition-
ally, emerging studies suggest that WSIs may also 
be used to infer other molecular alterations, such as 
RNA expression patterns and protein abundance (37).
While initial efforts focused on models trained to 
predict a single biomarker in a specific cancer type, 

newer frameworks now predict multiple biomarkers, 
including copy number alterations and RNA-derived 
signatures, across various malignancies (38). These 
findings emphasize the vast, clinically relevant data 
embedded in standard H&E-stained slides. Table 1 
provides an overview of significant studies utilizing 
AI for biomarker prediction, tumor classification, 
and outcome forecasting across diverse cancers.
Given the widespread use of H&E-stained slides 
in pathology laboratories globally, digitizing these 
images could enable the deployment of AI-driven 
biomarker prediction models even in low-resource 
settings, potentially benefiting a broader patient 
population.

DL-MODELS APPLIED TO THE 
PREDICTION OF PD-1 AND PD-L1 
EXPRESSION BASED ON H&E-
STAINED SECTIONS
The immune system maintains a balance between 
eliminating harmful pathogens and preserving 
self-tolerance, regulated by immune checkpoints 
like PD-1 (39). PD-1, a key checkpoint receptor, mod-
ulates T-cell activity to maintain peripheral toler-
ance, preventing autoimmune responses (40, 41).
The identification of PD-1 and its ligand PD-L1 in 
tumor cells, first reported in 2002, unveiled a criti-
cal mechanism of immune evasion by which tumors 
exploit immune checkpoint pathways to evade 
immune surveillance (42). PD-L1 is predominantly 
expressed on the surface of tumor cells but can 
also be released in the tumor microenvironment via 
exosomes, amplifying immune suppression (43, 44). 
Given its role in promoting tumor immune escape, 
PD-L1 has become a major target in cancer immu-
notherapy (45-48).
Traditionally, PD-L1 expression is assessed through 
immunohistochemistry (IHC), which remains the 
standard in clinical practice (49-51). However, despite 
its widespread use, IHC presents several challenges: 
it is time-consuming, costly, and may deplete limited 
tissue samples, particularly in small biopsies. Fur-
thermore, interpretation of PD-L1 staining is prone 
to significant variability due to differences in stain-
ing protocols, subjective interpretation of staining 
intensity, and interobserver variability, especially 
in borderline cases (52, 53). This inconsistency can 
critically impact clinical decision-making, potentially 
misclassifying patients and affecting their eligibility 
for immune checkpoint inhibitors.
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Digital pathology and AI-driven models offer a prom-
ising alternative, providing a more standardized and 
reproducible assessment of PD-L1 expression by ana-
lyzing WSIs across multiple tumor regions (54). Unlike 
manual scoring, AI models can systematically quan-
tify PD-L1 expression across heterogeneous tumor 
regions, reducing variability and enhancing diag-
nostic accuracy. For instance, AI algorithms applied 
in lung cancer demonstrated high accuracy in pre-
dicting PD-L1 status, aligning closely with patholo-
gist assessments even in challenging cases (55, 56).
A pivotal study by Jin et al. introduced a pan-can-
cer AI model capable of predicting PD-L1 expres-
sion directly from H&E-stained WSIs, analyzing over 
12,000 slides from 20 tumor types and achieving a 
mean area under the curve (AUC) of 0.83 (57). The 
model’s predictions were validated against conven-
tional IHC and mRNA expression, underscoring the 
potential of AI to standardize biomarker assessment 
and minimize interobserver variability.
Table 2 summarizes selected studies comparing 
AI-based digital pathology approaches with conven-
tional immunohistochemistry for PD-L1 assessment 
across different tumor types.

This shift toward AI-driven PD-L1 evaluation reflects 
the emerging paradigm of “intelligent digital pathol-
ogy”, where AI augments conventional diagnostics, 
potentially accelerating therapeutic decision-mak-
ing, expanding access to precision oncology, and 
ensuring more consistent biomarker assessment 
across diverse clinical settings (32, 58, 59).
The clinical integration of this approach is partic-
ularly relevant in the context of therapeutic deci-
sion-making. By predicting multiple biomarkers, 
including immune checkpoint-related proteins and 
mutational profiles, from routine H&E-stained slides, 
AI-driven pathology can guide the selection of tar-
geted therapies or immunotherapies. For instance, 
in advanced non-small cell lung cancer or gastric can-
cer, accurate prediction of PD-L1 expression or MSI 
status directly from histology can streamline treat-
ment eligibility decisions and reduce dependence on 
costly or time-consuming molecular assays (24, 36, 
52, 55, 57). Additionally, in multidisciplinary oncol-
ogy settings, integrating AI-generated outputs into 
tumor board discussions may enhance personal-
ized care planning, particularly when biopsy mate-
rial is limited or when rapid turnaround is needed.

Table 2. Comparison between immunohistochemistry (IHC) and AI-based digital pathology for PD-L1 assessment.

FEATURE IMMUNOHISTOCHEMISTRY 
(IHC)

AI-BASED DIGITAL PATHOLOGY 
(ON H&E WSIS) REF.

Sample 
requirement

Requires additional antibody-based 
staining

Uses routine H&E-stained slides already 
available in pathology labs

(49-51)/
(24, 57)

Tissue 
consumption

Consumes precious tissue, critical in 
small biopsies

No additional tissue required; preserves 
material for other tests

(52)/  
(23/37)

Cost High costs due to antibodies, 
reagents, and specialized equipment

Lower long-term costs after digitization 
infrastructure is in place

(53)/
(24, 57)

Turnaround 
time

Time-consuming due to staining and 
manual interpretation

Faster analysis after digitization and 
model deployment

(52)/
(23, 55, 57)

Expertise 
required

Requires experienced pathologists 
for accurate interpretation

AI supports interpretation; reduces 
reliance on specialist expertise

(52, 53)/
(54, 56)

Interpretation 
variability

High inter- and intra-observer 
variability

Provides standardized, reproducible 
results

(53)/
(54, 56)

Accessibility Often unavailable in peripheral or 
low-resource settings

H&E-based AI tools are scalable and 
suitable for resource-limited contexts

(52)/
(24, 57)

Multiplexing 
capability

Generally limited to one biomarker 
per slide

Potential to predict multiple biomarkers 
from a single H&E image

(49-51)/
(25, 26, 36-38)

Molecular 
correlation Direct protein expression detection Can predict mRNA expression, mutation 

status, and other molecular features
(50)/
(37, 38, 57)

Scalability and 
automation Manual, slow, and hard to scale Fully automatable and scalable across 

large datasets
(52)/
(23, 54, 57)

IHC = Immunohistochemistry, AI = Artificial Intelligence, H&E = Hematoxylin and Eosin, WSI = Whole Slide Image, mRNA = Messenger 
Ribonucleic Acid.
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DEEP LEARNING APPLIED TO 
DIGITAL PATHOLOGY IN THE 
PREDICTION OF HCC
Non-alcoholic steatohepatitis (NASH), a progressive 
form of non-alcoholic fatty liver disease (NAFLD), 
is now recognized as the leading cause of chronic 
liver disease and a key risk factor for hepatocel-
lular carcinoma (HCC) (60). Histologically, NASH is 
marked by macrovesicular steatosis, lymphocytic 
infiltration, hepatocellular ballooning, apoptotic 
bodies, and varying degrees of fibrosis (61). Tra-
ditionally, fibrosis has been considered the stron-
gest predictor of adverse outcomes, including cir-
rhosis and HCC (62, 63). However, over 50% of 
NASH-related HCC cases arise in non-cirrhotic liv-
ers, indicating that other histological and molec-
ular features beyond fibrosis may drive carcino-
genesis (64, 65).
Recent AI-based models have been applied to 
the automated assessment of liver fibrosis and 
other NASH-related histological changes, demon-
strating ML techniques’ key advantage in provid-
ing objective, quantitative evaluations that reduce 
interobserver variability and support more consis-
tent longitudinal disease monitoring (66, 67). DL 
approaches, in particular, have shown significant 
promise in identifying subtle histological markers 
associated with early carcinogenesis that may be 
missed in conventional assessments, extending 
predictive capabilities beyond fibrosis and nodu-
lar regeneration (68).
A significant study by Nakatsuka et al. explored a 
DL model to predict HCC development using only 
H&E-stained WSIs of liver biopsies from steatosis 
patients (69). The model aimed to identify individu-
als at higher HCC risk solely based on liver steatosis 
analysis, achieving an AUC of 0.80 for predicting HCC 
onset within seven years post-biopsy. Notably, the 
model identified at-risk patients without advanced 
fibrosis, underscoring the role of additional histo-
logical features in liver tumorigenesis.
Through saliency map analysis, the model highlighted 
key predictors of HCC development, including a high 
nuclear-to-cytoplasmic ratio, nuclear atypia, lym-
phocytic infiltrates, and the absence of large lipid 
droplets. These findings suggest that AI models can 
detect subtle histological changes predictive of liver 
cancer risk in routine biopsies, potentially without 
expensive molecular assays (69).
This work emphasizes two critical points: first, AI 
algorithms can extract complex histological signals 

indicative of future disease progression; second, 
integrating AI with digital pathology, or computa-
tional pathology (CPath), may revolutionize liver his-
topathology by enhancing diagnostic accuracy, aid-
ing prognostic stratification, and supporting preven-
tive strategies in NASH-related HCC (69).

TOWARDS A GENERAL 
FOUNDATION MODEL FOR 
COMPUTATIONAL PATHOLOGY
In routine clinical practice, pathologists are responsi-
ble for a broad spectrum of diagnostic tasks, includ-
ing cancer detection, subtyping, grading, and stag-
ing. These tasks require consideration of thousands 
of potential differential diagnoses. To address these 
challenges, a wide range of AI models have been 
developed in recent years, particularly within the 
domains of digital and computational pathology (70, 
71). Among the most promising innovations is the 
development of AI-driven models capable of multi-
modal data integration, which should combine clin-
ical, genomic, epigenomic, radiomic, pathomic, and 
microbiological data to provide a more comprehen-
sive view of the oncologic landscape (72). Compu-
tational pathology (CPath) has demonstrated the 
potential to predict molecular alterations directly 
from histopathological images, including microsat-
ellite instability (MSI) (8, 73, 74), patient prognosis 
(75), and treatment response (76). However, most 
of these models are trained for a specific cancer 
type and are limited to predicting a narrow set of 
molecular or immunohistochemical features, which 
restricts their applicability in diverse clinical con-
texts. To overcome these limitations, a new class 
of AI tools has emerged: multi-cancer, multi-bio-
marker models designed to simultaneously pre-
dict a wide range of molecular alterations across 
various tumor types using standard H&E-stained 
slides (39). These systems, defined as “foundation 
models,” are characterized by their scalability, ver-
satility, and adaptability to multiple diagnostic tasks 
and cancer types (77). In this direction, a gener-
al-purpose foundation model for computational 
pathology, defined as UNI, has been recently intro-
duced by Chen TJ and colleagues (78). Pretrained 
on over 100 million images, the UNI model demon-
strated the capacity to classify up to 108 cancer 
types, marking a significant advancement toward 
the integration of AI into routine workflows in ana-
tomic pathology Labs.
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COMPUTATIONAL PATHOLOGY IN 
ONCOLOGY
Artificial intelligence has emerged as a revolution-
ary tool for the discovery of predictive biomark-
ers in human cancers. AI-based methods are rede-
fining the landscape for researchers, pathologists, 
and oncologists, demonstrating the potential of 
well-trained algorithms to extract clinically rele-
vant molecular information directly from routinely 
stained H&E sections.
When applied to clinical practice, the advantages 
of this paradigm shift are numerous. One of the 
most significant is the speed of analysis: the aver-
age computational time to generate a PD-L1 prob-
ability map has been reported at approximately 40 
seconds, with a range from 7.9 to 66 seconds (79). 
This indicates that, with a robust and validated DL 
model, pathologists could provide near-instanta-
neous estimates of PD-L1 expression, facilitating 
timely and personalized therapeutic decisions for 
oncologists (87).
In addition to rapidity, AI-based approaches offer 
substantial cost-saving opportunities. The reliance on 
conventional immunohistochemistry, dependent on 
specialized reagents, equipment, and trained person-
nel, may be significantly reduced or even replaced. 
The possibility of identifying genes and immune-re-
lated biomarkers, such as PD-L1, directly from H&E 
sections without antibody-based detection opens 
intriguing transformative possibilities, particularly 
for decentralized and resource-limited settings.
Furthermore, AI-driven histopathological analy-
sis enables the extraction of novel insights beyond 
PD-L1 expression, potentially enhancing clinical deci-
sion-making. Immune pathology, a key founda-
tion for immune checkpoint inhibitor (ICI) thera-
pies, remains a relatively underexplored area within 
diagnostic pathology. AI methodologies could facil-
itate the identification of novel “metabiomarkers”, 
complex, integrative features predictive of ICI ther-
apy response (82). This hypothesis is supported by 
recent evidence showing that DL models can pre-
dict immune and inflammatory gene signatures in 
hepatocellular carcinoma directly from histologi-
cal images (83).
Taken together, these findings underscore the poten-
tial of AI, particularly DL algorithms, to extract multi-
ple molecular and immunological biomarkers from 
standard histology, enabling the discovery of novel 
predictive features and advancing the goals of pre-
cision oncology. Computational pathology (also 

referred to as pathomics) thus represents a unique 
opportunity: to serve as a rapid, cost-effective, and 
integrative diagnostic tool for clinicians, oncolo-
gists, and surgeons alike, delivering morphologi-
cal, genetic, and molecular data in near real time.
Another major strength of computational pathology 
lies in its ability to generate large-scale datasets of 
digitized slides, which can be integrated with com-
plementary clinical (real-world data), genomic, epig-
enomic, microbiologic, radiologic (radiomics), and 
laboratory information. This multimodal integra-
tion offers the potential to define novel metabio-
markers, which can outperform unimodal mod-
els in terms of predictive accuracy, as measured by 
improved AUC metrics (76).
Moreover, computational pathology can address a 
long-standing challenge in diagnostic histopathol-
ogy: interobserver variability. This is particularly rel-
evant for PD-L1 scoring, which is known to vary sig-
nificantly among both expert and generalist pathol-
ogists (84-86). While DL models can provide more 
consistent and standardized assessments of PD-L1 
expression, their capacity to directly infer molecular 
and transcriptomic features from histology offers a 
far more transformative leap than simply resolving 
variability issues.
For successful adoption in clinical practice, AI-based 
computational pathology systems must be inte-
grated into existing digital workflows within pathol-
ogy departments. This includes embedding AI mod-
els into slide viewers and laboratory information sys-
tems (LIS), allowing pathologists to access real-time 
predictions directly from digitized H&E slides. Addi-
tionally, the deployment of AI tools should be sup-
ported by intuitive, clinician-oriented interfaces that 
facilitate interpretation and integrate seamlessly into 
the diagnostic process. Real-world implementation 
also requires rigorous prospective validation stud-
ies and standardized protocols to demonstrate clin-
ical utility. Importantly, AI-driven solutions should 
be designed to complement rather than replace 
human expertise, acting as decision-support tools 
that enhance diagnostic accuracy, reproducibility, 
and efficiency in oncology care.

NEXT CHALLENGES
Along with its unquestionable advantages, the 
real-world implementation of computational his-
tology entails several major issues that need to be 
addressed before AI models can be safely and effec-
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tively integrated into clinical practice, particularly 
within the field of immuno-oncology. The major 
current limitations hindering clinical implementa-
tion are summarized below:
1. Data Quality and Availability: robust algorithm 
performance requires access to large volumes of 
high-quality, well-annotated data. However, onco-
logic datasets are often incomplete, heterogeneous, 
biased, and inherently complex, limiting model gen-
eralizability and reproducibility.
2. Model Selection Complexity: the proliferation of 
ML and DL algorithms, often promoted through mar-
keting strategies emphasizing innovation rather than 
practical limitations and clinical safety, can make it 
challenging for researchers and clinicians to select 
the most appropriate model for specific applica-
tions. While advanced DL models are widely mar-
keted as cutting-edge solutions, classical ML mod-
els may outperform them in low-data scenarios and 
should not be overlooked, particularly when sam-
ple sizes are limited (87).
3. Regulatory Certification: certification is a critical 
prerequisite for clinical adoption. At present, there 
is no universally accepted regulatory pathway for 
the validation and certification of AI-based tools in 
pathology. The establishment of worldwide (or at 
least continental-wide) standardized, harmonized 
processes for model certification should be encour-
aged to ensure safety and efficacy.
4. Lack of Guidelines and Protocols: clear proto-
cols and guidelines for conducting rigorous, clini-
cally meaningful studies on AI model applicability 
are currently lacking. This gap hinders reproduc-

ibility and delays the translation of research find-
ings into clinical practice.
5. Lack of Trust and Interpretability: a significant 
barrier to clinical implementation is the skepticism 
among healthcare professionals, including patholo-
gists, regarding the reliability and transparency of AI 
tools. Improving model interpretability is essential 
to foster trust. Techniques from the field of explain-
able artificial intelligence (XAI) may help to demystify 
algorithmic decision-making and reduce the “black 
box” effect (88, 89).
6. Insufficient External Validation: AI models that 
perform well on internal datasets often fail when 
applied to external, real-world data. To ensure clin-
ical robustness, models should be validated using 
diverse, multi-institutional datasets. One proposed 
strategy is divergent validation, which evaluates 
model performance across various independent 
datasets to enhance generalizability and transpar-
ency (90, 91).
6. Bias and Variability: algorithmic biases can result 
from inconsistencies in slide staining, errors in label-
ing the data sets used for training, scanner calibra-
tion, or demographic imbalances in training data. 
These factors can significantly impair model perfor-
mance and reliability. Reducing such biases is cru-
cial to enable fair and accurate deployment of AI 
models in clinical settings.
Despite these several interconnected limitations, 
the primary obstacle hindering the widespread 
use of AI strategies in clinical practice is the lack of 
standardized and universally accepted pathways 
for validation and certification. Without clear regu-

Table 3. Current challenges and proposed solutions for the clinical integration of AI in computational pathology.

CHALLENGE DESCRIPTION SUGGESTED SOLUTIONS REF.

Data Quality Incomplete, biased, 
heterogeneous datasets

Centralized data curation and 
federated learning (1, 92)

Model Selection Difficult choice among ML/DL 
models

Model comparison guidelines, 
model benchmarking (89)

Certification Lack of standard regulatory 
pathways

International consensus on AI 
model validation –

Trust and Interpretability Lack of clinician trust due to 
black-box nature XAI, transparent algorithms (90–91)

Interobserver Variability Variability in human assessment 
(e.g., PD-L1 scoring)

Algorithmic standardization, 
model calibration (86–88)

External Validation Limited generalizability across 
datasets

Multi-institutional validation, 
divergent validation (90-91)

Staining and demographic biases Bias in data acquisition and 
population representation

Dataset balancing, domain 
adaptation techniques –

ML = Machine Learning, DL = Deep Learning, AI = Artificial Intelligence, PD-L1 = Programmed Death-Ligand 1, XAI = Explainable Artificial 
Intelligence.
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latory guidance and robust multicenter validation 
studies, many AI-based models remain restricted to 
research settings. This uncertainty, coupled with a 
lack of transparency in algorithmic outputs, contin-
ues to undermine clinician trust and delays the full 
integration of AI into routine oncologic diagnostics.
The key limitations currently hindering the imple-
mentation of AI in clinical workflows, along with pro-
posed solutions, are summarized in Table 3.

CONCLUSIONS
The introduction of AI-driven models has triggered 
a true revolution in oncology, with applications 
spanning from the interpretation of medical imag-
ing to the enhancement of diagnostic and prognos-
tic accuracy, including prediction of overall survival 
and response to various therapeutic strategies (92). 
Among these tools, convolutional neural networks 
(CNNs) have emerged as indispensable new tools 
for the recognition and classification of both histo-
logical and radiological images. CNNs can detect 
subtle and complex patterns that may escape even 
the most experienced pathologists and radiologists.
A key strength of CNNs lies in their ability to auton-
omously learn from data, particularly when trained 
on large, high-quality datasets. This has enabled 
a shift from traditional machine learning towards 
deep learning in medical image analysis. CNNs have 
demonstrated outstanding performance in tasks 
such as cancer detection, histological classification, 
and subtype recognition.
More recently, advanced CNN-based architectures 
have achieved notable success in cancer diagnostics. 
For instance, CNNs combined with Long Short-Term 
Memory (LSTM) networks have shown promise in 
predicting cancer prognosis by capturing temporal 
patterns in patient data. Spatially Constrained CNNs 
(SC-CNNs) have proven effective for nuclei classifi-
cation in colorectal cancer, enhancing precision in 
histopathological assessment. Moreover, the inte-
gration of CNNs with Fourier Transform Infrared 
(FTIR) spectroscopy has yielded promising results 
for accurate cancer detection in biopsy specimens.
Taken together, these developments highlight the 
transformative role of AI in advancing precision 
oncology, in which context pathology assumes a piv-
otal role. Manual interpretation of medical images 
remains susceptible to human error and interob-
server variability. In this context, AI-based method-
ologies, particularly those leveraging CNNs, offer 

robust solutions to improve diagnostic consistency 
and uncover patterns beyond human perception. 
These innovations pave the way for more refined, 
data-driven approaches to cancer detection, classifi-
cation, and treatment selection, ultimately support-
ing the realization of a truly personalized oncology. 
This constellation of technological advancements fos-
ters a more data-driven, patient-centered approach 
to precision oncology. It creates a new medical uni-
verse that aligns with tailored cancer care’s ethical 
and scientific mission. Pathology plays a pivotal role 
in this evolving “computational” landscape, echo-
ing the transformative impact once initiated by Vir-
chow’s microscope.
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